Abstract

Using the correspondence between (saturated) nonlinear and (unsaturated) linear dielectric constants, we propose a simple and systematic method to achieve selective excitation of lasing modes that would have been dwarfed by more dominant ones of lower thresholds. The key element of this method is incorporating the control of modal interactions into the spatial pump profile, and it is most valuable in the presence of spatially and spectrally overlapping modes, where it would be difficult to achieve selective excitation otherwise.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interaction-induced mode switching in steady-state microlasers

Li Ge, David Liu, Alexander Cerjan, Stefan Rotter, Hui Cao, Steven G. Johnson, Hakan E. Türeci, and A. Douglas Stone
Opt. Express 24(1) 41-54 (2016)

Creation of new lasing modes with spatially nonuniform gain

Jonathan Andreasen and Hui Cao
Opt. Lett. 34(22) 3586-3588 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging, Physical Principles and Sequence Design (Wiley-Liss, 1999).
  2. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref] [PubMed]
  3. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
    [Crossref] [PubMed]
  4. Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
    [Crossref] [PubMed]
  5. L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser powerefficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871 (2014).
    [Crossref]
  6. S. Haroche, “Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary,” Rev. Mod. Phys. 85, 1083 (2013).
    [Crossref]
  7. M. H. Devoret and J. M. Martinis, “Implementing qubits with superconducting integrated circuits,” Quant. Inf. Proc. 3, 163 (2004).
    [Crossref]
  8. H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
    [Crossref]
  9. M. Fink, “Time-reversed acoustics,” Phys. Today 50, 34–40 (1997).
    [Crossref]
  10. H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28, 213–214 (1996).
    [Crossref]
  11. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33, 1025–1031 (1997).
    [Crossref]
  12. J. Dingjan, M. P. van Exter, and J. P. Woerdman, “Geometric modes in a single-frequency Nd: YVO 4 laser,” Opt. Commun. 188, 345–351 (2001).
    [Crossref]
  13. Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds., Advanced Series in Applied Physics (World Scientific, 1996).
  14. Optical Microcavities, K. J. Vahala, ed., Advanced Series in Applied Physics (World Scientific, 2004).
  15. H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).
    [Crossref]
  16. M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).
    [Crossref] [PubMed]
  17. S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
    [Crossref] [PubMed]
  18. N. B. Rex, R. K. Chang, and L. J. Guido, “Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping,” IEEE Photon. Technol. Lett. 131 (2002).
    [Crossref]
  19. G. D. Chern and et al., “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710 (2003).
    [Crossref]
  20. T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111, 023902 (2013).
    [Crossref] [PubMed]
  21. S. F. Liew, B. Redding, L. Ge, G. S. Solomon, and H. Cao, “Active control of emission directionality of semiconductor microdisk lasers,” App. Phys. Lett. 104, 231108 (2014).
    [Crossref]
  22. N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
    [Crossref] [PubMed]
  23. N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426 (2014).
    [Crossref]
  24. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
    [Crossref]
  25. S. F. Liew, L. Ge, B. Redding, S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).
    [Crossref]
  26. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
    [Crossref]
  27. D. Snoke and P. Littlewood, “Polariton condensates,” Phys. Today 63, 42 (2010).
    [Crossref]
  28. I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299 (2013).
    [Crossref]
  29. L. Ge, A. Nersisyan, B. Oztop, and H. E. Türeci, “Pattern formation and strong nonlinear interactions in exciton-polariton condensates,” http://arxiv.org/abs/1311.4847 .
  30. F. Baboux, L. Ge, T. Jacqmin, M. Biondi, A. Lemâıtre, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci, A. Amo, and J. Bloch, “Bosonic condensate in a flat energy band,” http://arxiv.org/abs/1505.05652 .
  31. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Storng interactions in multimode random lasers,” Science 320, 643 (2008).
    [Crossref]
  32. L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010).
    [Crossref]
  33. A. Cerjan, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory for complex gain media,” Opt. Express 23, 6455 (2015).
    [Crossref] [PubMed]
  34. H. Haken, Light: Laser Dynamics, Vol. 2 (North-Holland Phys. Publishing, 1985).
  35. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).
  36. S. Esterhazy and et al., “Scalable numerical approach for the steady-state ab-initiolaser theory,” Phys. Rev. A 90, 023816 (2014).
    [Crossref]
  37. L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895 (2008).
    [Crossref] [PubMed]
  38. S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances,” Opt. Express 19, 1539 (2011).
    [Crossref] [PubMed]
  39. A. Cerjan, Y. D. Chong, L. Ge, and A. D. Stone, “Steady-State ab initio laser theory for N-level lasers,” Opt. Express 20, 474 (2012).
    [Crossref] [PubMed]
  40. M. Leonetti and C. Lopez, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102, 071105 (2013).
    [Crossref]
  41. J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labont, P. Sebbah, A. D. Stone, H. E. Treci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).
    [Crossref]

2015 (3)

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).
[Crossref]

S. F. Liew, L. Ge, B. Redding, S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).
[Crossref]

A. Cerjan, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory for complex gain media,” Opt. Express 23, 6455 (2015).
[Crossref] [PubMed]

2014 (5)

S. Esterhazy and et al., “Scalable numerical approach for the steady-state ab-initiolaser theory,” Phys. Rev. A 90, 023816 (2014).
[Crossref]

S. F. Liew, B. Redding, L. Ge, G. S. Solomon, and H. Cao, “Active control of emission directionality of semiconductor microdisk lasers,” App. Phys. Lett. 104, 231108 (2014).
[Crossref]

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426 (2014).
[Crossref]

Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser powerefficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871 (2014).
[Crossref]

2013 (4)

S. Haroche, “Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary,” Rev. Mod. Phys. 85, 1083 (2013).
[Crossref]

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111, 023902 (2013).
[Crossref] [PubMed]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299 (2013).
[Crossref]

M. Leonetti and C. Lopez, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102, 071105 (2013).
[Crossref]

2012 (3)

A. Cerjan, Y. D. Chong, L. Ge, and A. D. Stone, “Steady-State ab initio laser theory for N-level lasers,” Opt. Express 20, 474 (2012).
[Crossref] [PubMed]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (5)

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
[Crossref]

D. Snoke and P. Littlewood, “Polariton condensates,” Phys. Today 63, 42 (2010).
[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[Crossref] [PubMed]

2008 (2)

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Storng interactions in multimode random lasers,” Science 320, 643 (2008).
[Crossref]

L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895 (2008).
[Crossref] [PubMed]

2006 (1)

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

2004 (1)

M. H. Devoret and J. M. Martinis, “Implementing qubits with superconducting integrated circuits,” Quant. Inf. Proc. 3, 163 (2004).
[Crossref]

2003 (1)

G. D. Chern and et al., “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710 (2003).
[Crossref]

2002 (2)

N. B. Rex, R. K. Chang, and L. J. Guido, “Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping,” IEEE Photon. Technol. Lett. 131 (2002).
[Crossref]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
[Crossref]

2001 (1)

J. Dingjan, M. P. van Exter, and J. P. Woerdman, “Geometric modes in a single-frequency Nd: YVO 4 laser,” Opt. Commun. 188, 345–351 (2001).
[Crossref]

1997 (2)

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33, 1025–1031 (1997).
[Crossref]

M. Fink, “Time-reversed acoustics,” Phys. Today 50, 34–40 (1997).
[Crossref]

1996 (1)

H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28, 213–214 (1996).
[Crossref]

Aida, T.

Andreasen, J.

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labont, P. Sebbah, A. D. Stone, H. E. Treci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).
[Crossref]

Asatryan, A. A.

Bachelard, N.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426 (2014).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

Becker, T.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

Botten, L. C.

Bravo-Abad, J.

Brown, R. W.

E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging, Physical Principles and Sequence Design (Wiley-Liss, 1999).

Byrne, M. A.

Cao, H.

S. F. Liew, L. Ge, B. Redding, S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).
[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).
[Crossref]

S. F. Liew, B. Redding, L. Ge, G. S. Solomon, and H. Cao, “Active control of emission directionality of semiconductor microdisk lasers,” App. Phys. Lett. 104, 231108 (2014).
[Crossref]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labont, P. Sebbah, A. D. Stone, H. E. Treci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Carusotto, I.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299 (2013).
[Crossref]

Cerjan, A.

Chang, R. K.

N. B. Rex, R. K. Chang, and L. J. Guido, “Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping,” IEEE Photon. Technol. Lett. 131 (2002).
[Crossref]

Chen, H.

Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Chen, Y. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33, 1025–1031 (1997).
[Crossref]

Chern, G. D.

G. D. Chern and et al., “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710 (2003).
[Crossref]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances,” Opt. Express 19, 1539 (2011).
[Crossref] [PubMed]

Chong, Y. D.

A. Cerjan, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory for complex gain media,” Opt. Express 23, 6455 (2015).
[Crossref] [PubMed]

A. Cerjan, Y. D. Chong, L. Ge, and A. D. Stone, “Steady-State ab initio laser theory for N-level lasers,” Opt. Express 20, 474 (2012).
[Crossref] [PubMed]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Chua, S.-L.

Ciuti, C.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299 (2013).
[Crossref]

Davis, P.

Deng, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
[Crossref]

Devoret, M. H.

M. H. Devoret and J. M. Martinis, “Implementing qubits with superconducting integrated circuits,” Quant. Inf. Proc. 3, 163 (2004).
[Crossref]

Dingjan, J.

J. Dingjan, M. P. van Exter, and J. P. Woerdman, “Geometric modes in a single-frequency Nd: YVO 4 laser,” Opt. Commun. 188, 345–351 (2001).
[Crossref]

Englert, B.-G.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

Esterhazy, S.

S. Esterhazy and et al., “Scalable numerical approach for the steady-state ab-initiolaser theory,” Phys. Rev. A 90, 023816 (2014).
[Crossref]

Fink, M.

M. Fink, “Time-reversed acoustics,” Phys. Today 50, 34–40 (1997).
[Crossref]

Fukushima, T.

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[Crossref] [PubMed]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
[Crossref]

Ge, L.

S. F. Liew, L. Ge, B. Redding, S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).
[Crossref]

S. F. Liew, B. Redding, L. Ge, G. S. Solomon, and H. Cao, “Active control of emission directionality of semiconductor microdisk lasers,” App. Phys. Lett. 104, 231108 (2014).
[Crossref]

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser powerefficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871 (2014).
[Crossref]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).
[Crossref] [PubMed]

A. Cerjan, Y. D. Chong, L. Ge, and A. D. Stone, “Steady-State ab initio laser theory for N-level lasers,” Opt. Express 20, 474 (2012).
[Crossref] [PubMed]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labont, P. Sebbah, A. D. Stone, H. E. Treci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).
[Crossref]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010).
[Crossref]

L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895 (2008).
[Crossref] [PubMed]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Storng interactions in multimode random lasers,” Science 320, 643 (2008).
[Crossref]

Gigan, S.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426 (2014).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

Guido, L. J.

N. B. Rex, R. K. Chang, and L. J. Guido, “Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping,” IEEE Photon. Technol. Lett. 131 (2002).
[Crossref]

Haacke, E. M.

E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging, Physical Principles and Sequence Design (Wiley-Liss, 1999).

Haken, H.

H. Haken, Light: Laser Dynamics, Vol. 2 (North-Holland Phys. Publishing, 1985).

Harayama, T.

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[Crossref] [PubMed]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
[Crossref]

Haroche, S.

S. Haroche, “Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary,” Rev. Mod. Phys. 85, 1083 (2013).
[Crossref]

Haug, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
[Crossref]

Hentschel, M.

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[Crossref] [PubMed]

Hisch, T.

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111, 023902 (2013).
[Crossref] [PubMed]

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33, 1025–1031 (1997).
[Crossref]

Kao, C. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33, 1025–1031 (1997).
[Crossref]

Laabs, H.

H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28, 213–214 (1996).
[Crossref]

Labont, L.

Lamb, W. E.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Leonetti, M.

M. Leonetti and C. Lopez, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102, 071105 (2013).
[Crossref]

Li, H.

Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Li, J.

Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Liertzer, M.

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111, 023902 (2013).
[Crossref] [PubMed]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).
[Crossref] [PubMed]

Liew, S. F.

S. F. Liew, L. Ge, B. Redding, S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).
[Crossref]

S. F. Liew, B. Redding, L. Ge, G. S. Solomon, and H. Cao, “Active control of emission directionality of semiconductor microdisk lasers,” App. Phys. Lett. 104, 231108 (2014).
[Crossref]

Littlewood, P.

D. Snoke and P. Littlewood, “Polariton condensates,” Phys. Today 63, 42 (2010).
[Crossref]

Lopez, C.

M. Leonetti and C. Lopez, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102, 071105 (2013).
[Crossref]

Malik, O.

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser powerefficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871 (2014).
[Crossref]

Martinis, J. M.

M. H. Devoret and J. M. Martinis, “Implementing qubits with superconducting integrated circuits,” Quant. Inf. Proc. 3, 163 (2004).
[Crossref]

Mintert, F.

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111, 023902 (2013).
[Crossref] [PubMed]

Narimanov, E. E.

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[Crossref] [PubMed]

Nishimura, T.

Noblin, X.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426 (2014).
[Crossref]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Ozygus, B.

H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28, 213–214 (1996).
[Crossref]

Pogany, D.

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111, 023902 (2013).
[Crossref] [PubMed]

Redding, B.

S. F. Liew, L. Ge, B. Redding, S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).
[Crossref]

S. F. Liew, B. Redding, L. Ge, G. S. Solomon, and H. Cao, “Active control of emission directionality of semiconductor microdisk lasers,” App. Phys. Lett. 104, 231108 (2014).
[Crossref]

Rex, N. B.

N. B. Rex, R. K. Chang, and L. J. Guido, “Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping,” IEEE Photon. Technol. Lett. 131 (2002).
[Crossref]

Rotter, S.

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111, 023902 (2013).
[Crossref] [PubMed]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).
[Crossref] [PubMed]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Storng interactions in multimode random lasers,” Science 320, 643 (2008).
[Crossref]

Sargent, M.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Sasaki, T.

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[Crossref] [PubMed]

Scully, M. O.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Sebbah, P.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426 (2014).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labont, P. Sebbah, A. D. Stone, H. E. Treci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).
[Crossref]

Shinohara, S.

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[Crossref] [PubMed]

Snoke, D.

D. Snoke and P. Littlewood, “Polariton condensates,” Phys. Today 63, 42 (2010).
[Crossref]

Soljacic, M.

Solomon, G. S.

S. F. Liew, B. Redding, L. Ge, G. S. Solomon, and H. Cao, “Active control of emission directionality of semiconductor microdisk lasers,” App. Phys. Lett. 104, 231108 (2014).
[Crossref]

Solomon, S.

S. F. Liew, L. Ge, B. Redding, S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).
[Crossref]

Stone, A. D.

A. Cerjan, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory for complex gain media,” Opt. Express 23, 6455 (2015).
[Crossref] [PubMed]

A. Cerjan, Y. D. Chong, L. Ge, and A. D. Stone, “Steady-State ab initio laser theory for N-level lasers,” Opt. Express 20, 474 (2012).
[Crossref] [PubMed]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances,” Opt. Express 19, 1539 (2011).
[Crossref] [PubMed]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labont, P. Sebbah, A. D. Stone, H. E. Treci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).
[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895 (2008).
[Crossref] [PubMed]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Storng interactions in multimode random lasers,” Science 320, 643 (2008).
[Crossref]

Sun, Y.

Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Tan, W.

Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Tandy, R. J.

Thompson, M. R.

E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging, Physical Principles and Sequence Design (Wiley-Liss, 1999).

Treci, H. E.

Tureci, H. E.

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).
[Crossref] [PubMed]

Türeci, H. E.

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser powerefficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871 (2014).
[Crossref]

L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895 (2008).
[Crossref] [PubMed]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Storng interactions in multimode random lasers,” Science 320, 643 (2008).
[Crossref]

Vaccaro, P. O.

van Exter, M. P.

J. Dingjan, M. P. van Exter, and J. P. Woerdman, “Geometric modes in a single-frequency Nd: YVO 4 laser,” Opt. Commun. 188, 345–351 (2001).
[Crossref]

Vanneste, C.

Varcoe, B. T. H.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

Venkatesan, R.

E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging, Physical Principles and Sequence Design (Wiley-Liss, 1999).

Walther, H.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33, 1025–1031 (1997).
[Crossref]

Wang, S. C.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33, 1025–1031 (1997).
[Crossref]

Wiersig, J.

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).
[Crossref]

Woerdman, J. P.

J. Dingjan, M. P. van Exter, and J. P. Woerdman, “Geometric modes in a single-frequency Nd: YVO 4 laser,” Opt. Commun. 188, 345–351 (2001).
[Crossref]

Yamamoto, Y.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
[Crossref]

Adv. Opt. Photon. (1)

App. Phys. Lett. (1)

S. F. Liew, B. Redding, L. Ge, G. S. Solomon, and H. Cao, “Active control of emission directionality of semiconductor microdisk lasers,” App. Phys. Lett. 104, 231108 (2014).
[Crossref]

Appl. Phys. Lett. (2)

G. D. Chern and et al., “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710 (2003).
[Crossref]

M. Leonetti and C. Lopez, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102, 071105 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33, 1025–1031 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (1)

N. B. Rex, R. K. Chang, and L. J. Guido, “Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping,” IEEE Photon. Technol. Lett. 131 (2002).
[Crossref]

Nat. Photonics (1)

L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser powerefficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871 (2014).
[Crossref]

Nat. Phys. (1)

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426 (2014).
[Crossref]

Opt. Commun. (1)

J. Dingjan, M. P. van Exter, and J. P. Woerdman, “Geometric modes in a single-frequency Nd: YVO 4 laser,” Opt. Commun. 188, 345–351 (2001).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28, 213–214 (1996).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (3)

S. F. Liew, L. Ge, B. Redding, S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91, 043828 (2015).
[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010).
[Crossref]

S. Esterhazy and et al., “Scalable numerical approach for the steady-state ab-initiolaser theory,” Phys. Rev. A 90, 023816 (2014).
[Crossref]

Phys. Rev. Lett. (6)

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111, 023902 (2013).
[Crossref] [PubMed]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).
[Crossref] [PubMed]

S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902 (2010).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Phys. Today (2)

M. Fink, “Time-reversed acoustics,” Phys. Today 50, 34–40 (1997).
[Crossref]

D. Snoke and P. Littlewood, “Polariton condensates,” Phys. Today 63, 42 (2010).
[Crossref]

Quant. Inf. Proc. (1)

M. H. Devoret and J. M. Martinis, “Implementing qubits with superconducting integrated circuits,” Quant. Inf. Proc. 3, 163 (2004).
[Crossref]

Rep. Prog. Phys. (1)

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

Rev. Mod. Phys. (4)

S. Haroche, “Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary,” Rev. Mod. Phys. 85, 1083 (2013).
[Crossref]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299 (2013).
[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).
[Crossref]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489 (2010).
[Crossref]

Science (2)

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Storng interactions in multimode random lasers,” Science 320, 643 (2008).
[Crossref]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889 (2011).
[Crossref] [PubMed]

Other (7)

E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging, Physical Principles and Sequence Design (Wiley-Liss, 1999).

Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds., Advanced Series in Applied Physics (World Scientific, 1996).

Optical Microcavities, K. J. Vahala, ed., Advanced Series in Applied Physics (World Scientific, 2004).

L. Ge, A. Nersisyan, B. Oztop, and H. E. Türeci, “Pattern formation and strong nonlinear interactions in exciton-polariton condensates,” http://arxiv.org/abs/1311.4847 .

F. Baboux, L. Ge, T. Jacqmin, M. Biondi, A. Lemâıtre, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci, A. Amo, and J. Bloch, “Bosonic condensate in a flat energy band,” http://arxiv.org/abs/1505.05652 .

H. Haken, Light: Laser Dynamics, Vol. 2 (North-Holland Phys. Publishing, 1985).

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Thresholds in a 1D cavity with uniform pumping and selective pumping using the two-step method described in the main text. Open and filled dots show the actual thresholds of modes 1 and 2 with uniform pumping. Dashed and solid lines in both (a) and (b) show the noninteracting thresholds of mode 1 and mode 2, respectively. Their intersection on the vertical axis shows their identical threshold with the pump profile given by Eq. (6) at D 0 = 1.88 D 0 ( 1 ). In (a) we suppress mode 1 by multiplying its intensity in the original spatial hole burning interactions by a factor α ∈ [1,3]. In (b) we favor mode 2 by multiplying its intensity (which is about 1/17 of that of mode 1) by a factor β ∈ [−28,1]. Inset in (a): The cavity has refractive index nc = 3 and a perfect mirror on the left side. The gain medium is characterized by ωaL = 20 and γL = 2.
Fig. 2
Fig. 2 Reduced threshold and single-mode lasing using the two-step selective excitation described in the main text. (a) Pump profile f ˜ 2 ( r ) (purple thin solid line) that corresponds to the rightmost data in Fig. 1(b). Also shown are the normalized mode profiles | Ψ 1 ( r ) | 2 (red dashed line) and | Ψ 2 ( r ) | 2 (thick black solid line) at D 0 = 1.88 D 1 ( 0 ) with uniform pumping. (b) Intensities at the right end of the cavity. With f ˜ 2 ( r ) in (a), the target mode 2 (black solid line) is the only lasing mode in the pump range shown. Red dashed line and black squares show the intensities of modes 1 and 2 with uniform pumping, respectively. The same legends are used in (c), which shows the frequencies of the lasing modes in (b). The left end of each line marks the threshold of the corresponding mode. (d) Modal gain of the first four modes with f ˜ 2 ( r ) in (a).
Fig. 3
Fig. 3 Selective excitation in a 2D diffusive random laser. (a) Intracavity intensity for the first six modes with uniform pumping. The black line shows the 6th mode to be selected. Inset: The system is modeled as a disk region of radius R containing random scatterers of refractive index n = 1.2 and a background index n = 1. The gain medium is characterized by ωaR = 30 and γR = 2. (b) Noninteracting thresholds of the six modes in (a) but with a new pump profile given by Eq. (6) (the leftmost data points) and then gradually decreasing the intensity of the target mode 6 in the spatial hole burning interactions. Inset: False-color intensity plot of mode 6. (c) Same as (a) but with the pump profile f ˜ 6 ( r ) shown in the inset [the rightmost data points in (b)]. (d) Spectra at D 0 = 1.6 D 0 ( 1 ) with uniform pumping (upper panel) and with f ˜ 6 ( r ) in (c) (lower panel).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E + ( r , t ) = μ = 1 N Ψ μ ( r ) e i Ω μ t ,
[ 2 + [ ε c ( r ) + ε g ( r ; D 0 ) ] Ω μ 2 ] Ψ μ ( r ; D 0 ) = 0 , ( μ = 1 , , N )
ε g ( r ; D 0 ) = γ Ω μ ω a + i γ D 0 f 0 ( r ) 1 + v = 1 N Γ v | Ψ v ( r ; D 0 ) | 2 ,
[ 2 + ( ε c ( r ) + γ D 0 ( μ ) f 0 ( r ) Ω μ ω a + i γ ) Ω μ 2 ] Ψ μ ( r ; D 0 ( μ ) ) = 0.
r μ = cavity f 0 ( r ) | Ψ μ ( r ; D 0 ) | 2 d r cavity | Ψ μ ( r ; D 0 ) | 2 d r ,
f ˜ 0 ( r ) = C f 0 ( r ) 1 + v = 1 N Γ v | Ψ v ( r ; D 0 ) | 2 ,
D ˜ 0 ( μ ) = D 0 C

Metrics