Abstract

We present a numerical study of coherent control in a room temperature InAs/InP quantum dot (QD) semiconductor optical amplifier (SOA) using shaped ultra-short pulses. Both the gain and absorption regimes were analyzed for pulses with central wavelengths lying on either side of the inhomogeneously broadened gain spectrum. The numerical experiments predict that in the gain regime the coherent interactions between a QD SOA and a pulse can be controlled by incorporating a quadratic spectral phase (QSP) in the pulse profile. The sequential interaction with the gain medium of different spectral components of the pulse results in either suppression or enhancement of the coherent signatures on the pulse profile depending upon their proximity to the gain spectrum peak. In the absorption regime, positive QSP induces a negative chirp that adds up to that of a two photon absorption induced Kerr-like effect resulting in pulse compression while negative QSP enhances dispersive broadening of the pulse.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature

Ouri Karni, Amir Capua, Gadi Eisenstein, Vitalii Sichkovskyi, Vitalii Ivanov, and Johann Peter Reithmaier
Opt. Express 21(22) 26786-26796 (2013)

Coherent control in room-temperature quantum dot semiconductor optical amplifiers using shaped pulses

O. Karni, A. K. Mishra, G. Eisenstein, V. Ivanov, and J. P. Reithmaier
Optica 3(6) 570-576 (2016)

Nonlinear pulse propagation in a quantum dot laser

O. Karni, A. Capua, G. Eisenstein, D. Franke, J. Kreissl, H. Kuenzel, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, M. Kleinert, D. Bimberg, C. Gilfert, and J. P Reithmaier
Opt. Express 21(5) 5715-5736 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Jhanke, Quantum Optics with Semiconductor Nanostructures (Woodhead Publishing Limited, 2012).
  2. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
    [Crossref]
  3. D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics,” Phys. Rev. Lett. 87(25), 257401 (2001).
    [Crossref] [PubMed]
  4. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
    [Crossref] [PubMed]
  5. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84(11), 2513–2516 (2000).
    [Crossref] [PubMed]
  6. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
    [Crossref] [PubMed]
  7. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [Crossref] [PubMed]
  8. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [Crossref] [PubMed]
  9. A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations in a room-temperature quantum dash semiconductor optical amplifier,” Phys. Rev. B 90(4), 045305 (2014).
    [Crossref]
  10. O. Karni, A. Capua, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature,” Opt. Express 21(22), 26786–26796 (2013).
    [Crossref] [PubMed]
  11. M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
    [PubMed]
  12. O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91(11), 115304 (2015).
    [Crossref]
  13. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2000).
  14. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65(4), 041308 (2002).
    [Crossref]
  15. P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60(11), 7784–7787 (1999).
    [Crossref]
  16. A. Capua, O. Karni, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Coherent control in a semiconductor optical amplifier operating at room temperature,” Nat. Commun. 5(5025), 5025 (2014).
    [Crossref] [PubMed]
  17. A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell–Schrodinger framework,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–10 (2013).
    [Crossref]
  18. H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
    [Crossref]
  19. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  20. O. M. Sarkisov, A. N. Petrukhin, F. E. Gostev, and A. A. Titov, “Control of elementary chemical reactions by femtosecond light pulses,” Quantum Electron. 31(6), 483–488 (2001).
    [Crossref]
  21. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
    [Crossref]
  22. J. Johanna, M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108(1), 53–58 (2004).
    [Crossref]
  23. T. Ideguchi, K. Yoshioka, A. Mysyrowicz, and M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100(23), 233001 (2008).
    [Crossref] [PubMed]
  24. M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
    [Crossref] [PubMed]
  25. Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
    [Crossref] [PubMed]
  26. A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
    [Crossref]
  27. S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev. 183(2), 457–485 (1969).
    [Crossref]
  28. O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
    [Crossref]
  29. A. J. Zilkie, J. Meier, M. Mojahedi, A. S. Helmy, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, and J. S. Aitchison, “Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 µm,” J. Lightwave Technol. 26(11), 1498–1509 (2008).
    [Crossref]

2015 (1)

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91(11), 115304 (2015).
[Crossref]

2014 (4)

A. Capua, O. Karni, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Coherent control in a semiconductor optical amplifier operating at room temperature,” Nat. Commun. 5(5025), 5025 (2014).
[Crossref] [PubMed]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations in a room-temperature quantum dash semiconductor optical amplifier,” Phys. Rev. B 90(4), 045305 (2014).
[Crossref]

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

2013 (4)

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

O. Karni, A. Capua, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature,” Opt. Express 21(22), 26786–26796 (2013).
[Crossref] [PubMed]

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell–Schrodinger framework,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–10 (2013).
[Crossref]

2011 (1)

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

2010 (1)

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

2008 (2)

2006 (1)

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref] [PubMed]

2004 (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

J. Johanna, M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108(1), 53–58 (2004).
[Crossref]

2002 (3)

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65(4), 041308 (2002).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

2001 (2)

O. M. Sarkisov, A. N. Petrukhin, F. E. Gostev, and A. A. Titov, “Control of elementary chemical reactions by femtosecond light pulses,” Quantum Electron. 31(6), 483–488 (2001).
[Crossref]

D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics,” Phys. Rev. Lett. 87(25), 257401 (2001).
[Crossref] [PubMed]

2000 (2)

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84(11), 2513–2516 (2000).
[Crossref] [PubMed]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

1999 (1)

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60(11), 7784–7787 (1999).
[Crossref]

1996 (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[Crossref]

1969 (1)

S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev. 183(2), 457–485 (1969).
[Crossref]

Aitchison, J. S.

Akopian, N.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref] [PubMed]

Alivisatos, A. P.

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Andrzejewski, J.

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

Atiya, G.

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref] [PubMed]

Barrios, P.

Bayer, M.

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65(4), 041308 (2002).
[Crossref]

Benson, O.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84(11), 2513–2516 (2000).
[Crossref] [PubMed]

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref] [PubMed]

Bimberg, D.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60(11), 7784–7787 (1999).
[Crossref]

Booker, I.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Borri, P.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60(11), 7784–7787 (1999).
[Crossref]

Bour, D.

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Brereton, P.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

Capasso, F.

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Capua, A.

A. Capua, O. Karni, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Coherent control in a semiconductor optical amplifier operating at room temperature,” Nat. Commun. 5(5025), 5025 (2014).
[Crossref] [PubMed]

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations in a room-temperature quantum dash semiconductor optical amplifier,” Phys. Rev. B 90(4), 045305 (2014).
[Crossref]

O. Karni, A. Capua, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature,” Opt. Express 21(22), 26786–26796 (2013).
[Crossref] [PubMed]

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell–Schrodinger framework,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–10 (2013).
[Crossref]

Choi, H.

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Corzine, S.

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Dantus, M.

J. Johanna, M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108(1), 53–58 (2004).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

Dela Cruz, M.

J. Johanna, M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108(1), 53–58 (2004).
[Crossref]

Denisenko, A.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Diehl, L.

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Eastham, P. R.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

Ediger, M.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

Ehrenfreund, E.

D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics,” Phys. Rev. Lett. 87(25), 257401 (2001).
[Crossref] [PubMed]

Eisenstein, G.

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91(11), 115304 (2015).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Coherent control in a semiconductor optical amplifier operating at room temperature,” Nat. Commun. 5(5025), 5025 (2014).
[Crossref] [PubMed]

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations in a room-temperature quantum dash semiconductor optical amplifier,” Phys. Rev. B 90(4), 045305 (2014).
[Crossref]

O. Karni, A. Capua, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature,” Opt. Express 21(22), 26786–26796 (2013).
[Crossref] [PubMed]

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell–Schrodinger framework,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–10 (2013).
[Crossref]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Fattal, D.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Fedder, H.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Forchel, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65(4), 041308 (2002).
[Crossref]

Gali, A.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Gerardot, B. D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref] [PubMed]

Gerhardt, I.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Gershoni, D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref] [PubMed]

D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics,” Phys. Rev. Lett. 87(25), 257401 (2001).
[Crossref] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Gilfert, C.

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

Gkortsas, V.-M.

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Gostev, F. E.

O. M. Sarkisov, A. N. Petrukhin, F. E. Gostev, and A. A. Titov, “Control of elementary chemical reactions by femtosecond light pulses,” Quantum Electron. 31(6), 483–488 (2001).
[Crossref]

Gready, D.

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

Hahn, E. L.

S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev. 183(2), 457–485 (1969).
[Crossref]

Heinrichsdorff, F.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60(11), 7784–7787 (1999).
[Crossref]

Helmy, A. S.

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Höfler, G.

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Hopkinson, M.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

Hugues, M.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

Hvam, J. M.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60(11), 7784–7787 (1999).
[Crossref]

Ideguchi, T.

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, and M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100(23), 233001 (2008).
[Crossref] [PubMed]

Ivanov, V.

A. Capua, O. Karni, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Coherent control in a semiconductor optical amplifier operating at room temperature,” Nat. Commun. 5(5025), 5025 (2014).
[Crossref] [PubMed]

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

O. Karni, A. Capua, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature,” Opt. Express 21(22), 26786–26796 (2013).
[Crossref] [PubMed]

Jamali, M.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Janzén, E.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Johanna, J.

J. Johanna, M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108(1), 53–58 (2004).
[Crossref]

Kaplan, W. D.

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

Kaptan, Y.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

Karni, O.

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91(11), 115304 (2015).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Coherent control in a semiconductor optical amplifier operating at room temperature,” Nat. Commun. 5(5025), 5025 (2014).
[Crossref] [PubMed]

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations in a room-temperature quantum dash semiconductor optical amplifier,” Phys. Rev. B 90(4), 045305 (2014).
[Crossref]

O. Karni, A. Capua, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature,” Opt. Express 21(22), 26786–26796 (2013).
[Crossref] [PubMed]

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell–Schrodinger framework,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–10 (2013).
[Crossref]

Kärtner, F. X.

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Kolarczik, M.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

Kölling, S.

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

Korn, J.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

Kuchar, K. J.

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Kuwata-Gonokami, M.

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, and M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100(23), 233001 (2008).
[Crossref] [PubMed]

Langbein, W.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60(11), 7784–7787 (1999).
[Crossref]

Lee, S.-Y.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Lindner, N. H.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref] [PubMed]

Lingnau, B.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

Löffler, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Lozovoy, V. V.

J. Johanna, M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108(1), 53–58 (2004).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

Lüdge, K.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

Malloy, K. J.

Mao, M.-H.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60(11), 7784–7787 (1999).
[Crossref]

Marynski, A.

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

McCall, S. L.

S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev. 183(2), 457–485 (1969).
[Crossref]

Meier, J.

Mikhelashvili, V.

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

Mishra, A. K.

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91(11), 115304 (2015).
[Crossref]

Misiewicz, J.

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

Mizrahi, U.

D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics,” Phys. Rev. Lett. 87(25), 257401 (2001).
[Crossref] [PubMed]

Mojahedi, M.

Momenzadeh, S. A.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Mørk, J.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60(11), 7784–7787 (1999).
[Crossref]

Musial, A.

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

Mysyrowicz, A.

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, and M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100(23), 233001 (2008).
[Crossref] [PubMed]

Norris, T. B.

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Ohshima, T.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Owschimikow, N.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

Paik, S.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Pastirk, I.

J. Johanna, M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108(1), 53–58 (2004).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

Pelton, M.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84(11), 2513–2516 (2000).
[Crossref] [PubMed]

Petroff, P. M.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref] [PubMed]

D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics,” Phys. Rev. Lett. 87(25), 257401 (2001).
[Crossref] [PubMed]

Petrukhin, A. N.

O. M. Sarkisov, A. N. Petrukhin, F. E. Gostev, and A. A. Titov, “Control of elementary chemical reactions by femtosecond light pulses,” Quantum Electron. 31(6), 483–488 (2001).
[Crossref]

Phillips, R. T.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

Piper, I. M.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref] [PubMed]

Poitras, D.

Poole, P. J.

Regelman, D. V.

D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics,” Phys. Rev. Lett. 87(25), 257401 (2001).
[Crossref] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Reithmaier, J. P.

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91(11), 115304 (2015).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Coherent control in a semiconductor optical amplifier operating at room temperature,” Nat. Commun. 5(5025), 5025 (2014).
[Crossref] [PubMed]

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations in a room-temperature quantum dash semiconductor optical amplifier,” Phys. Rev. B 90(4), 045305 (2014).
[Crossref]

O. Karni, A. Capua, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature,” Opt. Express 21(22), 26786–26796 (2013).
[Crossref] [PubMed]

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Rendler, T.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Rotter, T. J.

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Santori, C.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84(11), 2513–2516 (2000).
[Crossref] [PubMed]

Sarkisov, O. M.

O. M. Sarkisov, A. N. Petrukhin, F. E. Gostev, and A. A. Titov, “Control of elementary chemical reactions by femtosecond light pulses,” Quantum Electron. 31(6), 483–488 (2001).
[Crossref]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Schmidgall, E. R.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

Schoenfeld, W. V.

D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics,” Phys. Rev. Lett. 87(25), 257401 (2001).
[Crossref] [PubMed]

Schöll, E.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

Sek, G.

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Sichkovskyi, V.

A. Capua, O. Karni, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Coherent control in a semiconductor optical amplifier operating at room temperature,” Nat. Commun. 5(5025), 5025 (2014).
[Crossref] [PubMed]

O. Karni, A. Capua, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature,” Opt. Express 21(22), 26786–26796 (2013).
[Crossref] [PubMed]

Smith, P. W. E.

Solomon, G. S.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Son, N. T.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Stintz, A.

Titov, A. A.

O. M. Sarkisov, A. N. Petrukhin, F. E. Gostev, and A. A. Titov, “Control of elementary chemical reactions by femtosecond light pulses,” Quantum Electron. 31(6), 483–488 (2001).
[Crossref]

Vuckovic, J.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Walowicz, K. A.

J. Johanna, M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108(1), 53–58 (2004).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Widmann, M.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Woggon, U.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

Wrachtrup, J.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

Yamamoto, Y.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84(11), 2513–2516 (2000).
[Crossref] [PubMed]

Yang, C.

Yang, L.-P.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Yang, S.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Yoshioka, K.

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, and M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100(23), 233001 (2008).
[Crossref] [PubMed]

Zhao, N.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Zhu, J.

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Zilkie, A. J.

Appl. Phys. Lett. (1)

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104(12), 121104 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell–Schrodinger framework,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–10 (2013).
[Crossref]

J. Appl. Phys. (1)

A. Maryński, G. Sęk, A. Musiał, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and S. Kölling, “Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy,” J. Appl. Phys. 114(9), 094306 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. A (2)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

J. Johanna, M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108(1), 53–58 (2004).
[Crossref]

Nat. Commun. (2)

A. Capua, O. Karni, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J. P. Reithmaier, “Coherent control in a semiconductor optical amplifier operating at room temperature,” Nat. Commun. 5(5025), 5025 (2014).
[Crossref] [PubMed]

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4(2953), 2953 (2013).
[PubMed]

Nat. Mater. (1)

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14(2), 164–168 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F. X. Kärtner, and T. B. Norris, “Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics 4(10), 706–710 (2010).
[Crossref]

Nature (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev. 183(2), 457–485 (1969).
[Crossref]

Phys. Rev. B (4)

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91(11), 115304 (2015).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65(4), 041308 (2002).
[Crossref]

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60(11), 7784–7787 (1999).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations in a room-temperature quantum dash semiconductor optical amplifier,” Phys. Rev. B 90(4), 045305 (2014).
[Crossref]

Phys. Rev. Lett. (5)

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84(11), 2513–2516 (2000).
[Crossref] [PubMed]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref] [PubMed]

D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, “Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics,” Phys. Rev. Lett. 87(25), 257401 (2001).
[Crossref] [PubMed]

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106(6), 067401 (2011).
[Crossref] [PubMed]

T. Ideguchi, K. Yoshioka, A. Mysyrowicz, and M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100(23), 233001 (2008).
[Crossref] [PubMed]

Quantum Electron. (1)

O. M. Sarkisov, A. N. Petrukhin, F. E. Gostev, and A. A. Titov, “Control of elementary chemical reactions by femtosecond light pulses,” Quantum Electron. 31(6), 483–488 (2001).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Science (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Other (2)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2000).

F. Jhanke, Quantum Optics with Semiconductor Nanostructures (Woodhead Publishing Limited, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic description of the energy level diagram of the ensemble of the effective two-level systems. The blue dashed arrow indicates the continuation of the picture to represent the ensemble.
Fig. 2
Fig. 2 Simulated gain spectrum of a QD SOA biased at 100 mA. Spectral positions of the carrier wavelengths of the simulated pulses are indicated by arrows.
Fig. 3
Fig. 3 (a) Simulated time dependent intensity and (b) instantaneous frequency profiles of TL pulse after propagation through the SOA. (Norm. Int.:Normalized Intensity)
Fig. 4
Fig. 4 Simulated (a) intensity and (d) instantaneous frequency profiles of pulses with a PQSP of 2.53× 10 3 p s 2 / rad , (b) intensity and (e) instantaneous frequency profiles of pulses with a PQSP of 5.07× 10 3 p s 2 / rad and (c) intensity and (f) instantaneous frequency profiles of pulses with a PQSP of 7.60× 10 3 p s 2 / rad after propagation through the SOA. (Norm. Int.:Normalized Intensity)
Fig. 5
Fig. 5 Simulated (a) intensity and (d) instantaneous frequency profiles of pulses with a NQSP of 2.53× 10 3 p s 2 / rad , (b) intensity and (e) instantaneous frequency profiles of pulses with a NQSP of 5.07× 10 3 p s 2 / rad and (c) intensity and (f) instantaneous frequency profiles of pulses with a NQSP of 7.60× 10 3 p s 2 / rad after propagation through the SOA. The emergence of extra coherent features are encircled by green dashed circles. (Norm. Int.:Normalized Intensity)
Fig. 6
Fig. 6 Spatially resolved normalized population inversion plots for input pulse with (a) PQSP of 5.07× 10 3 p s 2 / rad (upper row) (b) NQSP of 5.07× 10 3 p s 2 / rad (lower row). The left, middle and the right columns of the plots show the population inversion along the entire amplifier, when the pulse is located right after the input facet, in the middle of the SOA and near the output facet, respectively.
Fig. 7
Fig. 7 Spatially resolved normalized population inversion plots for input pulse with (a) PQSP of 7.60× 10 3 p s 2 / rad (upper row) (b) NQSP of 7.60× 10 3 p s 2 / rad (lower row).
Fig. 8
Fig. 8 Simulated intensity and instantaneous frequency profiles of TL pulse and for pulses with different QSP profiles. Carrier wavelength is 1620 nm. (Norm. Int.:Normalized Intensity).
Fig. 9
Fig. 9 Spatially resolved normalized population inversion plots for input pulse carrier wavelength centered at 1620 nm with (a) PQSP of 5.07× 10 3 p s 2 / rad (upper row) (b) NQSP of 5.07× 10 3 p s 2 / rad (lower row).
Fig. 10
Fig. 10 Absorption regime. Simulated output intensity and instantaneous frequency profiles of TL input pulses and for input pulses with different QSP profiles. The carrier wavelength is 1540 nm. (Norm. Int.:Normalized Intensity).
Fig. 11
Fig. 11 Spatially resolved normalized population inversion plots for input pulse with (a) PQSP of 5.07× 10 3 p s 2 / rad (upper row), (b) NQSP of 5.07× 10 3 p s 2 / rad (lower row). The carrier wavelength is at 1540 nm.

Tables (3)

Tables Icon

Table 1 Simulation parameters

Tables Icon

Table 2 Simulation parameter at 100 mA bias.

Tables Icon

Table 3 Simulation parameter at 10 mA bias.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N res t = η i J qd N res τ res +( 1 N res D res ) N TPA τ TP A relax N res N D_total τ cap i=1 M N D i ( 1 N ex i 4 N D i ) N res N D_total τ d_cap i=1 M N D i ( 1ρ 11 i )+ V D V res ( 1 N res D res ) i=1 M 2 N D i ρ 11 i τ d_esc i
P res t = η i J qd N res τ res V D V res i=1 M N ex i τ ex +( 1 P res D res ) h TPA τ TP A relax V D V res i=1 M 2 N D i ( γ c ρ 11 i + γ ν ρ 22 i ) P res τ cap h 1 N D_total i=1 M N D i ρ 22 i + V D V res ( 1 P res D res ) 1 τ esc h i=1 M 2 N D i ( 1ρ 22 i )
N ex i t = N res N D_total . τ cap V res V D N D i ( 1 N ex i 4N D i ) N ex i τ ex11 ( 1 ρ 11 i )+ 2 N D i ρ 11 i τ 11ex ( 1 N ex i 4N D i ) +( 1 N res D res ) N ex i τ esc i N ex i τ ex
ρ 11 i t = γ c ρ 11 i + N ex i 2 N D_total . τ ex11 ( 1 ρ 11 i ) ρ 11 i τ 11ex ( 1 N ex i 4N D i ) + N res 2 N D_total . τ d_cap V res V D ( 1 ρ 11 i ) ρ 11 i τ d_esc i ( 1 N res D res )j μ E ( ρ 12 i ρ 21 i )
ρ 22 i t = γ ν ρ 22 i P res τ cap h V res V D ρ 22 i 2 N D_total + ( 1 ρ 22 i ) τ esc h ( 1 P res D res )+j μ E ( ρ 12 i ρ 21 i )
ρ 12 i t =( i ω i + γ h ) ρ 12 i j μ E ( ρ 11 i ρ 22 i )
N TPA t = I TPA ( 1 N res D res ) N TPA τ TP A relax N TPA τ TP A rec
h TPA t = I TPA ( 1 P res D res ) h TPA τ TP A relax N TPA τ TP A rec

Metrics