Abstract

The autocorrelation function of the fluorescence intensity of a nanoemitter is measured with the standard Hanbury-Brown and Twiss setup. Time-tagging of the photodetection events during all the experiment has opened new possibilities in terms of post-selection techniques that enable to go beyond the blinking and antibunching characterization. Here, we first present a new method developed to investigate in detail the antibunching of a fluorophore switching between two emitting states. Even if they exhibit the same fluorescence intensity, their respective amount of antibunching can be measured using the gap between their respective decay rates. The method is then applied to a nanoemitter consisting in a colloidal quantum dot coupled to a plasmonic resonator. The relative quantum efficiency of the charged and neutral biexcitons are determined.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bunching and antibunching in the fluorescence of semiconductor nanocrystals

G. Messin, J. P. Hermier, E. Giacobino, P. Desbiolles, and M. Dahan
Opt. Lett. 26(23) 1891-1893 (2001)

Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments

Benjamin D. Mangum, Yagnaseni Ghosh, Jennifer A. Hollingsworth, and Han Htoon
Opt. Express 21(6) 7419-7426 (2013)

Fast recognition of single quantum dots from high multi-exciton emission and clustering effects

Bin Li, Guofeng Zhang, Changgang Yang, Zhijie Li, Ruiyun Chen, Chengbing Qin, Yan Gao, He Huang, Liantuan Xiao, and Suotang Jia
Opt. Express 26(4) 4674-4685 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single photon interferences,” Europhys. Lett. 1, 173–179 (1986).
    [Crossref]
  2. T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
    [Crossref] [PubMed]
  3. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
    [Crossref]
  4. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref] [PubMed]
  5. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
    [Crossref] [PubMed]
  6. G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett. 11, 1136–1140 (2011).
    [Crossref] [PubMed]
  7. D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89, 035303 (2014).
    [Crossref]
  8. B.D. Mangum, Y. Ghosh, J. A. Hollingsworth, and H. Htoon, “Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments,” Opt. Express 21, 7419–7426 (2013).
    [Crossref] [PubMed]
  9. W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 49, 426–430 (2012).
    [Crossref]
  10. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
    [Crossref] [PubMed]
  11. J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
    [Crossref] [PubMed]
  12. P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking,” Phys. Rev. Lett 102, 136801 (2009).
    [Crossref] [PubMed]
  13. Al. L. Efros and M. Rosen, “RandomtTelegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110 (1997).
    [Crossref]
  14. K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single CdSe/ZnS nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008)
    [Crossref]
  15. Y. Wang, T Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102, 163001 (2009).
    [Crossref] [PubMed]
  16. Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007).
    [Crossref]
  17. T. J. Lin, W. J. Chuang, S. Cheng, and Y. F. Chen, “Enhancement of emission from CdSe quantum dots induced by propagating surface plasmon polaritons,” Appl. Phys. Lett. 94, 173506 (2009).
    [Crossref]
  18. I. Mallek-Zouari, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film,” Appl. Phys. Lett. 97, 053109 (2010).
    [Crossref]
  19. B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
    [Crossref] [PubMed]
  20. F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed auger recombination in “Giant” nanocrystals boosts optical gain performance,” Nano Lett. 9, 3482 (2009).
    [Crossref]
  21. A. Leray, C. Spriet, D. Trinel, Y. Usson Y, and L. Heliot, “Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation,” J. Microsc. 248, 66–76 (2012).
    [Crossref] [PubMed]
  22. B. E. Brinson, J. B. Lassiter, C. S. R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
    [Crossref]

2015 (1)

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

2014 (1)

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89, 035303 (2014).
[Crossref]

2013 (2)

B.D. Mangum, Y. Ghosh, J. A. Hollingsworth, and H. Htoon, “Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments,” Opt. Express 21, 7419–7426 (2013).
[Crossref] [PubMed]

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

2012 (3)

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 49, 426–430 (2012).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

A. Leray, C. Spriet, D. Trinel, Y. Usson Y, and L. Heliot, “Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation,” J. Microsc. 248, 66–76 (2012).
[Crossref] [PubMed]

2011 (1)

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett. 11, 1136–1140 (2011).
[Crossref] [PubMed]

2010 (1)

I. Mallek-Zouari, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film,” Appl. Phys. Lett. 97, 053109 (2010).
[Crossref]

2009 (4)

T. J. Lin, W. J. Chuang, S. Cheng, and Y. F. Chen, “Enhancement of emission from CdSe quantum dots induced by propagating surface plasmon polaritons,” Appl. Phys. Lett. 94, 173506 (2009).
[Crossref]

Y. Wang, T Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102, 163001 (2009).
[Crossref] [PubMed]

P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking,” Phys. Rev. Lett 102, 136801 (2009).
[Crossref] [PubMed]

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed auger recombination in “Giant” nanocrystals boosts optical gain performance,” Nano Lett. 9, 3482 (2009).
[Crossref]

2008 (2)

B. E. Brinson, J. B. Lassiter, C. S. R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[Crossref]

K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single CdSe/ZnS nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008)
[Crossref]

2007 (1)

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007).
[Crossref]

2000 (3)

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

1997 (1)

Al. L. Efros and M. Rosen, “RandomtTelegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110 (1997).
[Crossref]

1992 (1)

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

1986 (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[Crossref]

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Achermann, M.

Y. Wang, T Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102, 163001 (2009).
[Crossref] [PubMed]

Aspect, A.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[Crossref]

Bardhan, C. S. R.

B. E. Brinson, J. B. Lassiter, C. S. R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[Crossref]

Basché, T.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

Bawendi, M. G.

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett. 11, 1136–1140 (2011).
[Crossref] [PubMed]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Berman, P. R.

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

Beveratos, A.

Biadala, L.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89, 035303 (2014).
[Crossref]

Bracker, A. S.

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

Brinson, B. E.

B. E. Brinson, J. B. Lassiter, C. S. R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[Crossref]

Brouri, R.

Buil, S.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89, 035303 (2014).
[Crossref]

I. Mallek-Zouari, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film,” Appl. Phys. Lett. 97, 053109 (2010).
[Crossref]

P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking,” Phys. Rev. Lett 102, 136801 (2009).
[Crossref] [PubMed]

Buratto, S. K.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Burgers, A. P.

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

Canneson, D.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89, 035303 (2014).
[Crossref]

Carson, P. J.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Chen, Y.

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed auger recombination in “Giant” nanocrystals boosts optical gain performance,” Nano Lett. 9, 3482 (2009).
[Crossref]

Chen, Y. F.

T. J. Lin, W. J. Chuang, S. Cheng, and Y. F. Chen, “Enhancement of emission from CdSe quantum dots induced by propagating surface plasmon polaritons,” Appl. Phys. Lett. 94, 173506 (2009).
[Crossref]

Cheng, S.

T. J. Lin, W. J. Chuang, S. Cheng, and Y. F. Chen, “Enhancement of emission from CdSe quantum dots induced by propagating surface plasmon polaritons,” Appl. Phys. Lett. 94, 173506 (2009).
[Crossref]

Chuang, W. J.

T. J. Lin, W. J. Chuang, S. Cheng, and Y. F. Chen, “Enhancement of emission from CdSe quantum dots induced by propagating surface plasmon polaritons,” Appl. Phys. Lett. 94, 173506 (2009).
[Crossref]

De Greve, K.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Duan, L.-M.

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

Dubertret, B.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89, 035303 (2014).
[Crossref]

I. Mallek-Zouari, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film,” Appl. Phys. Lett. 97, 053109 (2010).
[Crossref]

P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking,” Phys. Rev. Lett 102, 136801 (2009).
[Crossref] [PubMed]

Efros, Al. L.

Al. L. Efros and M. Rosen, “RandomtTelegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110 (1997).
[Crossref]

Fallahi, P.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 49, 426–430 (2012).
[Crossref]

Fejer, M. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Forchel, A.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Gammon, D.

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

Gao, W. B.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 49, 426–430 (2012).
[Crossref]

García-Santamaría, F.

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed auger recombination in “Giant” nanocrystals boosts optical gain performance,” Nano Lett. 9, 3482 (2009).
[Crossref]

Ghosh, Y.

Giovanelli, E.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

Grangier, P.

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[Crossref]

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[Crossref]

Greffet, J-J.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

Habert, B.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

Hadfield, R. H.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Halas, N. J.

B. E. Brinson, J. B. Lassiter, C. S. R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[Crossref]

Heliot, L.

A. Leray, C. Spriet, D. Trinel, Y. Usson Y, and L. Heliot, “Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation,” J. Microsc. 248, 66–76 (2012).
[Crossref] [PubMed]

Hermier, J.-P.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89, 035303 (2014).
[Crossref]

I. Mallek-Zouari, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film,” Appl. Phys. Lett. 97, 053109 (2010).
[Crossref]

P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking,” Phys. Rev. Lett 102, 136801 (2009).
[Crossref] [PubMed]

Hofling, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Hollingsworth, J. A.

B.D. Mangum, Y. Ghosh, J. A. Hollingsworth, and H. Htoon, “Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments,” Opt. Express 21, 7419–7426 (2013).
[Crossref] [PubMed]

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed auger recombination in “Giant” nanocrystals boosts optical gain performance,” Nano Lett. 9, 3482 (2009).
[Crossref]

Htoon, H.

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Hugonin, J.-P.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

Imamoglu, A.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 49, 426–430 (2012).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Ito, Y.

K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single CdSe/ZnS nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008)
[Crossref]

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007).
[Crossref]

Javaux, C.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89, 035303 (2014).
[Crossref]

Ji, B.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

Kamp, M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Kanemitsu, Y.

K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single CdSe/ZnS nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008)
[Crossref]

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007).
[Crossref]

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Klimov, V. I.

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed auger recombination in “Giant” nanocrystals boosts optical gain performance,” Nano Lett. 9, 3482 (2009).
[Crossref]

Lassiter, J. B.

B. E. Brinson, J. B. Lassiter, C. S. R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[Crossref]

Lequeux, N.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

Leray, A.

A. Leray, C. Spriet, D. Trinel, Y. Usson Y, and L. Heliot, “Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation,” J. Microsc. 248, 66–76 (2012).
[Crossref] [PubMed]

Lin, T. J.

T. J. Lin, W. J. Chuang, S. Cheng, and Y. F. Chen, “Enhancement of emission from CdSe quantum dots induced by propagating surface plasmon polaritons,” Appl. Phys. Lett. 94, 173506 (2009).
[Crossref]

Mahler, B.

I. Mallek-Zouari, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film,” Appl. Phys. Lett. 97, 053109 (2010).
[Crossref]

P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking,” Phys. Rev. Lett 102, 136801 (2009).
[Crossref] [PubMed]

Maier, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Mallek-Zouari, I.

I. Mallek-Zouari, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film,” Appl. Phys. Lett. 97, 053109 (2010).
[Crossref]

Mangum, B.D.

Marquier, F.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

Mason, M. D.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Matsuda, K.

K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single CdSe/ZnS nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008)
[Crossref]

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007).
[Crossref]

McCracken, G. A.

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

McMahon, P. L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Michler, P.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Miguel-Sanchez, J.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 49, 426–430 (2012).
[Crossref]

Mirin, N.

B. E. Brinson, J. B. Lassiter, C. S. R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[Crossref]

Moerner, W. E.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

Nair, G.

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett. 11, 1136–1140 (2011).
[Crossref] [PubMed]

Nasilowski, M.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Orrit, M.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

Pelc, J. S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Poizat, J.-P.

Quélin, X.

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89, 035303 (2014).
[Crossref]

I. Mallek-Zouari, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film,” Appl. Phys. Lett. 97, 053109 (2010).
[Crossref]

P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking,” Phys. Rev. Lett 102, 136801 (2009).
[Crossref] [PubMed]

Roger, G.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[Crossref]

Rosen, M.

Al. L. Efros and M. Rosen, “RandomtTelegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110 (1997).
[Crossref]

Schaibley, J. R.

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

Schaller, R. D.

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed auger recombination in “Giant” nanocrystals boosts optical gain performance,” Nano Lett. 9, 3482 (2009).
[Crossref]

Schneider, C.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Sham., L. J.

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

Spinicelli, P.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking,” Phys. Rev. Lett 102, 136801 (2009).
[Crossref] [PubMed]

Spriet, C.

A. Leray, C. Spriet, D. Trinel, Y. Usson Y, and L. Heliot, “Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation,” J. Microsc. 248, 66–76 (2012).
[Crossref] [PubMed]

Steel, D. G.

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

Strouse, G. F.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Talon, H.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

Togan, E.

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 49, 426–430 (2012).
[Crossref]

Trinel, D.

A. Leray, C. Spriet, D. Trinel, Y. Usson Y, and L. Heliot, “Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation,” J. Microsc. 248, 66–76 (2012).
[Crossref] [PubMed]

Tuominen, M. T.

Y. Wang, T Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102, 163001 (2009).
[Crossref] [PubMed]

Usson Y, Y.

A. Leray, C. Spriet, D. Trinel, Y. Usson Y, and L. Heliot, “Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation,” J. Microsc. 248, 66–76 (2012).
[Crossref] [PubMed]

Vela, J.

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed auger recombination in “Giant” nanocrystals boosts optical gain performance,” Nano Lett. 9, 3482 (2009).
[Crossref]

Wang, Y.

Y. Wang, T Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102, 163001 (2009).
[Crossref] [PubMed]

Xu, X.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

Yamamoto, Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Yang, T

Y. Wang, T Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102, 163001 (2009).
[Crossref] [PubMed]

Yu, L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Zhao, J.

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett. 11, 1136–1140 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single CdSe/ZnS nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008)
[Crossref]

T. J. Lin, W. J. Chuang, S. Cheng, and Y. F. Chen, “Enhancement of emission from CdSe quantum dots induced by propagating surface plasmon polaritons,” Appl. Phys. Lett. 94, 173506 (2009).
[Crossref]

I. Mallek-Zouari, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film,” Appl. Phys. Lett. 97, 053109 (2010).
[Crossref]

Europhys. Lett. (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[Crossref]

J. Microsc. (1)

A. Leray, C. Spriet, D. Trinel, Y. Usson Y, and L. Heliot, “Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation,” J. Microsc. 248, 66–76 (2012).
[Crossref] [PubMed]

Langmuir (1)

B. E. Brinson, J. B. Lassiter, C. S. R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008).
[Crossref]

Nano Lett. (2)

F. García-Santamaría, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, “Suppressed auger recombination in “Giant” nanocrystals boosts optical gain performance,” Nano Lett. 9, 3482 (2009).
[Crossref]

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano Lett. 11, 1136–1140 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J-J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10, 170–175 (2015).
[Crossref] [PubMed]

Nature (3)

W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 49, 426–430 (2012).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J.-P. Hermier, “Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature,” Phys. Rev. B 89, 035303 (2014).
[Crossref]

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007).
[Crossref]

Phys. Rev. Lett (1)

P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertret, and J.-P. Hermier, “Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking,” Phys. Rev. Lett 102, 136801 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

Al. L. Efros and M. Rosen, “RandomtTelegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110 (1997).
[Crossref]

J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham., “Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon,” Phys. Rev. Lett. 110, 167401 (2013).
[Crossref] [PubMed]

Y. Wang, T Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102, 163001 (2009).
[Crossref] [PubMed]

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic representation of the first post-selection procedure that enhances the contribution of the neutral state. The cases of the lateral and central peaks are detailed. The histograms of coincidences are calculated by keeping only the photons arriving within the time-gated region (gray zone). The starting point of this region is defined by D. The double blue arrows indicate the delays selected for the calculation of the coincidences counts. Red/purple dots correspond to detection events on the detectors. Purple (respectively red) dots depict the radiative recombination of a neutral or a charged biexciton (respectively exciton or trion). When a biexcitonic cascade is detected (central peak), it has to be noted that the time-gated region is defined by taking the time detection of the biexciton as reference and not the laser pulse event (see dashed lines).
Fig. 2
Fig. 2 Schematic representation of the second post-selection procedure that enhances the contribution of the ionized state. The cases of the lateral and central peaks are detailed. The histograms of coincidences are calculated by keeping only the photons arriving within the time-gated region (yellow zone). The duration of this region is defined by D*. The double blue arrows indicate the delays selected for the calculation of the coincidences counts. Red/purple dots correspond to detection events on the detectors. Purple (respectively red) dots depict the radiative recombination of a neutral or a charged biexciton (respectively exciton or trion). When a biexcitonic cascade is detected (central peak), it has to be noted that the time-gated region is defined by taking the time detection of the biexciton as reference and not the laser pulse event (see dashed lines).
Fig. 3
Fig. 3 (a) Fraction of photons corresponding to monoexcitonic (red) and trion (blue) recombination as a function of D. (b) The same as a function of D*. For the two figures, the emitter spends the same time in the ionized and neutral states and τ* = 1 ns and τ = 2 ns.
Fig. 4
Fig. 4 (a) PL decay of GQD1. The fit (red line) corresponds to the sum of 2 exponentials decay with a lifetime of 1.1 ns (blue dashed line) and 2 ns (green dashed line) and with a respective amplitude of 0.41 and 0.59. (b) PL decay of GQD2.The fit (red line) corresponds to the sum of 2 exponentials decay with a lifetime of 0.9 ns (blue dashed line) and 2.5 ns (green dashed line) and with a respective amplitude of 0.28 and 0.72. (c) Polar representation of the fluorescence lifetime of GQD1. (d) Polar representation of the fluorescence lifetime of GQD2.
Fig. 5
Fig. 5 (a) Overall coincidences counts (GQD1). (b) Coincidence counts corresponding to photons that have been both recorded with a delay greater than 1 ns with respect to the pulse laser (GQD1, method described in [8]). (c) Area of the central peak normalized to the area of the lateral peaks as a function of D (GQD1). (d) Area of the central peak normalized to the area of the lateral peaks as a function of D* (GQD1). (e), (f), (g) and (h): the same for GQD2.

Metrics