Abstract

A novel calibration method for the line-structured light vision sensor that only requires the image of the light stripe on the target using a movable parallel cylinder target is proposed in this paper. The corresponding equations between two ellipses obtained from the intersection of the light stripe and the target and their projected images are established according to the perspective projection transformation, and the light plane equation is solved based on the constraint conditions that the minor axis of the ellipse is equal to the diameter of the cylinder. In the physical experiment, the field of view of the line-structured light vision sensor is about 500 mm × 400 mm, and the measurement distance is about 700 mm. A calibration accuracy of 0.07 mm is achieved using the proposed method, which is comparable to that when planar targets are used.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extrinsic parameter calibration of stereo vision sensors using spot laser projector

Zhen Liu, Yang Yin, Shaopeng Liu, and Xu Chen
Appl. Opt. 55(25) 7098-7105 (2016)

Vanishing feature constraints calibration method for binocular vision sensor

Zhenzhong Wei and Xiaokun Liu
Opt. Express 23(15) 18897-18914 (2015)

Dual surface structured light vision system based on multidimensional parameter coding

Ming Xu, Xianxin Lu, Haiming Huang, Mingjun Zhai, Qiong Luo, and Jianhua Ji
Appl. Opt. 58(26) 7212-7221 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Shirmohammadi and A. Ferrero, “Camera as the instrument: the rising trend of vision based measurement,” IEEE Trans. Instrum. Meas. 17(3), 41–47 (2014).
    [Crossref]
  2. Z. Ren, J. Liao, and L. Cai, “Three-dimensional measurement of small mechanical parts under a complicated background based on stereo vision,” Appl. Opt. 49(10), 1789–1801 (2010).
    [Crossref] [PubMed]
  3. W. Li and Y. F. Li, “Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror,” Opt. Express 19(7), 5855–5867 (2011).
    [Crossref] [PubMed]
  4. L. Lu, J. Xi, Y. Yu, and Q. Guo, “New approach to improve the accuracy of 3-D shape measurement of moving object using phase shifting profilometry,” Opt. Express 21(25), 30610–30622 (2013).
    [Crossref] [PubMed]
  5. E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. D. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
    [Crossref]
  6. R. S. Lu, Y. F. Li, and Q. Yu, “On-line measurement of straightness of seamless steel pipe using machine vision technique,” Sens. Actuators A Phys. 94(1-2), 95–101 (2001).
    [Crossref]
  7. A. Okamoto, Y. Wasa, and Y. Kagawa, “Development of shape measurement system for hot large forgings,” Kobe Steel Eng. Rep. 57(3), 29–33 (2007).
  8. Z. Liu, F. Li, B. Huang, and G. Zhang, “Real-time and accurate rail wear measurement method and experimental analysis,” J. Opt. Soc. Am. A 31(8), 1721–1729 (2014).
    [Crossref] [PubMed]
  9. X. Zhang, Y. Li, and L. Zhu, “Color code identification in coded structured light,” Appl. Opt. 51(22), 5340–5356 (2012).
    [Crossref] [PubMed]
  10. Y. Chen and Y. F. Li, “Self-recalibration of a colour-encoded light system for automated three-dimensional measurements,” Meas. Sci. Technol. 14(1), 33–40 (2003).
    [Crossref]
  11. P. Griffin, L. Narasimhan, and S. Yee, “Generation of uniquely encoded light patterns for range data acquisition,” Pattern Recognit. 25(6), 609–616 (1992).
    [Crossref]
  12. A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth data by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
    [Crossref]
  13. T. P. Koninckx and L. Van Gool, “Real-time range acquisition by adaptive structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 432–445 (2006).
    [Crossref] [PubMed]
  14. R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses,” IEEE J. Robot. Autom. 3(4), 323–344 (1987).
    [Crossref]
  15. Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [Crossref]
  16. Z. Zhang, “Camera calibration with one-dimensional objects,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004).
    [Crossref] [PubMed]
  17. H. Zhang, K. Y. Wong, and G. Zhang, “Camera calibration from images of spheres,” IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 499–502 (2007).
    [Crossref] [PubMed]
  18. K. Y. Wong, G. Zhang, and Z. Chen, “A stratified approach for camera calibration using spheres,” IEEE Trans. Image Process. 20(2), 305–316 (2011).
    [Crossref] [PubMed]
  19. D. Q. Huynh, R. A. Owens, and P. E. Hartmann, “Calibration a structured light stripe system: a novel approach,” Int. J. Comput. Vis. 33(1), 73–86 (1999).
    [Crossref]
  20. F. Q. Zhou and G. J. Zhang, “Complete calibration of a structured light stripe vision sensor through planar target of unknown orientations,” Image Vis. Comput. 23(1), 59–67 (2005).
    [Crossref]
  21. G. J. Zhang, Z. Liu, J. H. Sun, and Z. Z. Wei, “Novel calibration method for multi-sensor visual measurement system based on structured light,” Opt. Eng. 49(4), 043602 (2010).
    [Crossref]
  22. Z. Z. Wei, L. J. Cao, and G. J. Zhang, “A novel 1D target-based calibration method with unknown orientation for structured light vision sensor,” Opt. Laser Technol. 42(4), 570–574 (2010).
    [Crossref]
  23. Z. Liu, X. J. Li, F. J. Li, and G. J. Zhang, “Calibration method for line-structured light vision sensor based a single ball target,” Opt. Lasers Eng. 69(6), 20–28 (2015).
    [Crossref]
  24. A. R. Partridge, “Ellipses from a Circular and Spherical Point of View,” Two-year. Coll. Math. J. 14(5), 436–438 (1983).
  25. C. Steger, “An unbiased detector of curvilinear structures,” IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998).
    [Crossref]
  26. J. MORE, The Levenberg-Marquardt Algorithm, Implementation and Theory (Numerical Analysis, 1977).
  27. J. Y. Bouguet, “The MATLAB open source calibration toolbox,” http://www.vision.caltech.edu/bouguetj/calib _doc/.

2015 (1)

Z. Liu, X. J. Li, F. J. Li, and G. J. Zhang, “Calibration method for line-structured light vision sensor based a single ball target,” Opt. Lasers Eng. 69(6), 20–28 (2015).
[Crossref]

2014 (2)

S. Shirmohammadi and A. Ferrero, “Camera as the instrument: the rising trend of vision based measurement,” IEEE Trans. Instrum. Meas. 17(3), 41–47 (2014).
[Crossref]

Z. Liu, F. Li, B. Huang, and G. Zhang, “Real-time and accurate rail wear measurement method and experimental analysis,” J. Opt. Soc. Am. A 31(8), 1721–1729 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (2)

W. Li and Y. F. Li, “Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror,” Opt. Express 19(7), 5855–5867 (2011).
[Crossref] [PubMed]

K. Y. Wong, G. Zhang, and Z. Chen, “A stratified approach for camera calibration using spheres,” IEEE Trans. Image Process. 20(2), 305–316 (2011).
[Crossref] [PubMed]

2010 (3)

G. J. Zhang, Z. Liu, J. H. Sun, and Z. Z. Wei, “Novel calibration method for multi-sensor visual measurement system based on structured light,” Opt. Eng. 49(4), 043602 (2010).
[Crossref]

Z. Z. Wei, L. J. Cao, and G. J. Zhang, “A novel 1D target-based calibration method with unknown orientation for structured light vision sensor,” Opt. Laser Technol. 42(4), 570–574 (2010).
[Crossref]

Z. Ren, J. Liao, and L. Cai, “Three-dimensional measurement of small mechanical parts under a complicated background based on stereo vision,” Appl. Opt. 49(10), 1789–1801 (2010).
[Crossref] [PubMed]

2007 (2)

A. Okamoto, Y. Wasa, and Y. Kagawa, “Development of shape measurement system for hot large forgings,” Kobe Steel Eng. Rep. 57(3), 29–33 (2007).

H. Zhang, K. Y. Wong, and G. Zhang, “Camera calibration from images of spheres,” IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 499–502 (2007).
[Crossref] [PubMed]

2006 (1)

T. P. Koninckx and L. Van Gool, “Real-time range acquisition by adaptive structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 432–445 (2006).
[Crossref] [PubMed]

2005 (2)

A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth data by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
[Crossref]

F. Q. Zhou and G. J. Zhang, “Complete calibration of a structured light stripe vision sensor through planar target of unknown orientations,” Image Vis. Comput. 23(1), 59–67 (2005).
[Crossref]

2004 (1)

Z. Zhang, “Camera calibration with one-dimensional objects,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004).
[Crossref] [PubMed]

2003 (2)

Y. Chen and Y. F. Li, “Self-recalibration of a colour-encoded light system for automated three-dimensional measurements,” Meas. Sci. Technol. 14(1), 33–40 (2003).
[Crossref]

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. D. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

2001 (1)

R. S. Lu, Y. F. Li, and Q. Yu, “On-line measurement of straightness of seamless steel pipe using machine vision technique,” Sens. Actuators A Phys. 94(1-2), 95–101 (2001).
[Crossref]

2000 (1)

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

1999 (1)

D. Q. Huynh, R. A. Owens, and P. E. Hartmann, “Calibration a structured light stripe system: a novel approach,” Int. J. Comput. Vis. 33(1), 73–86 (1999).
[Crossref]

1998 (1)

C. Steger, “An unbiased detector of curvilinear structures,” IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998).
[Crossref]

1992 (1)

P. Griffin, L. Narasimhan, and S. Yee, “Generation of uniquely encoded light patterns for range data acquisition,” Pattern Recognit. 25(6), 609–616 (1992).
[Crossref]

1987 (1)

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses,” IEEE J. Robot. Autom. 3(4), 323–344 (1987).
[Crossref]

1983 (1)

A. R. Partridge, “Ellipses from a Circular and Spherical Point of View,” Two-year. Coll. Math. J. 14(5), 436–438 (1983).

Cai, L.

Cao, L. J.

Z. Z. Wei, L. J. Cao, and G. J. Zhang, “A novel 1D target-based calibration method with unknown orientation for structured light vision sensor,” Opt. Laser Technol. 42(4), 570–574 (2010).
[Crossref]

Chen, Y.

Y. Chen and Y. F. Li, “Self-recalibration of a colour-encoded light system for automated three-dimensional measurements,” Meas. Sci. Technol. 14(1), 33–40 (2003).
[Crossref]

Chen, Z.

K. Y. Wong, G. Zhang, and Z. Chen, “A stratified approach for camera calibration using spheres,” IEEE Trans. Image Process. 20(2), 305–316 (2011).
[Crossref] [PubMed]

Ferrero, A.

S. Shirmohammadi and A. Ferrero, “Camera as the instrument: the rising trend of vision based measurement,” IEEE Trans. Instrum. Meas. 17(3), 41–47 (2014).
[Crossref]

Griffin, P.

P. Griffin, L. Narasimhan, and S. Yee, “Generation of uniquely encoded light patterns for range data acquisition,” Pattern Recognit. 25(6), 609–616 (1992).
[Crossref]

Guo, Q.

Hartmann, P. E.

D. Q. Huynh, R. A. Owens, and P. E. Hartmann, “Calibration a structured light stripe system: a novel approach,” Int. J. Comput. Vis. 33(1), 73–86 (1999).
[Crossref]

He, X.

A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth data by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
[Crossref]

Huang, B.

Huynh, D. Q.

D. Q. Huynh, R. A. Owens, and P. E. Hartmann, “Calibration a structured light stripe system: a novel approach,” Int. J. Comput. Vis. 33(1), 73–86 (1999).
[Crossref]

Kagawa, Y.

A. Okamoto, Y. Wasa, and Y. Kagawa, “Development of shape measurement system for hot large forgings,” Kobe Steel Eng. Rep. 57(3), 29–33 (2007).

Koninckx, T. P.

T. P. Koninckx and L. Van Gool, “Real-time range acquisition by adaptive structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 432–445 (2006).
[Crossref] [PubMed]

Legat, J. D.

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. D. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Li, F.

Li, F. J.

Z. Liu, X. J. Li, F. J. Li, and G. J. Zhang, “Calibration method for line-structured light vision sensor based a single ball target,” Opt. Lasers Eng. 69(6), 20–28 (2015).
[Crossref]

Li, W.

Li, X. J.

Z. Liu, X. J. Li, F. J. Li, and G. J. Zhang, “Calibration method for line-structured light vision sensor based a single ball target,” Opt. Lasers Eng. 69(6), 20–28 (2015).
[Crossref]

Li, Y.

Li, Y. F.

W. Li and Y. F. Li, “Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror,” Opt. Express 19(7), 5855–5867 (2011).
[Crossref] [PubMed]

Y. Chen and Y. F. Li, “Self-recalibration of a colour-encoded light system for automated three-dimensional measurements,” Meas. Sci. Technol. 14(1), 33–40 (2003).
[Crossref]

R. S. Lu, Y. F. Li, and Q. Yu, “On-line measurement of straightness of seamless steel pipe using machine vision technique,” Sens. Actuators A Phys. 94(1-2), 95–101 (2001).
[Crossref]

Liao, J.

Liu, Z.

Z. Liu, X. J. Li, F. J. Li, and G. J. Zhang, “Calibration method for line-structured light vision sensor based a single ball target,” Opt. Lasers Eng. 69(6), 20–28 (2015).
[Crossref]

Z. Liu, F. Li, B. Huang, and G. Zhang, “Real-time and accurate rail wear measurement method and experimental analysis,” J. Opt. Soc. Am. A 31(8), 1721–1729 (2014).
[Crossref] [PubMed]

G. J. Zhang, Z. Liu, J. H. Sun, and Z. Z. Wei, “Novel calibration method for multi-sensor visual measurement system based on structured light,” Opt. Eng. 49(4), 043602 (2010).
[Crossref]

Lu, L.

Lu, R. S.

R. S. Lu, Y. F. Li, and Q. Yu, “On-line measurement of straightness of seamless steel pipe using machine vision technique,” Sens. Actuators A Phys. 94(1-2), 95–101 (2001).
[Crossref]

Malamas, E. N.

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. D. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Narasimhan, L.

P. Griffin, L. Narasimhan, and S. Yee, “Generation of uniquely encoded light patterns for range data acquisition,” Pattern Recognit. 25(6), 609–616 (1992).
[Crossref]

Niu, P.

A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth data by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
[Crossref]

Okamoto, A.

A. Okamoto, Y. Wasa, and Y. Kagawa, “Development of shape measurement system for hot large forgings,” Kobe Steel Eng. Rep. 57(3), 29–33 (2007).

Owens, R. A.

D. Q. Huynh, R. A. Owens, and P. E. Hartmann, “Calibration a structured light stripe system: a novel approach,” Int. J. Comput. Vis. 33(1), 73–86 (1999).
[Crossref]

Partridge, A. R.

A. R. Partridge, “Ellipses from a Circular and Spherical Point of View,” Two-year. Coll. Math. J. 14(5), 436–438 (1983).

Petit, L.

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. D. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Petrakis, E. G. M.

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. D. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Ren, Z.

Shirmohammadi, S.

S. Shirmohammadi and A. Ferrero, “Camera as the instrument: the rising trend of vision based measurement,” IEEE Trans. Instrum. Meas. 17(3), 41–47 (2014).
[Crossref]

Steger, C.

C. Steger, “An unbiased detector of curvilinear structures,” IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998).
[Crossref]

Sun, J. H.

G. J. Zhang, Z. Liu, J. H. Sun, and Z. Z. Wei, “Novel calibration method for multi-sensor visual measurement system based on structured light,” Opt. Eng. 49(4), 043602 (2010).
[Crossref]

Tsai, R. Y.

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses,” IEEE J. Robot. Autom. 3(4), 323–344 (1987).
[Crossref]

Van Gool, L.

T. P. Koninckx and L. Van Gool, “Real-time range acquisition by adaptive structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 432–445 (2006).
[Crossref] [PubMed]

Wasa, Y.

A. Okamoto, Y. Wasa, and Y. Kagawa, “Development of shape measurement system for hot large forgings,” Kobe Steel Eng. Rep. 57(3), 29–33 (2007).

Wei, Z. Z.

G. J. Zhang, Z. Liu, J. H. Sun, and Z. Z. Wei, “Novel calibration method for multi-sensor visual measurement system based on structured light,” Opt. Eng. 49(4), 043602 (2010).
[Crossref]

Z. Z. Wei, L. J. Cao, and G. J. Zhang, “A novel 1D target-based calibration method with unknown orientation for structured light vision sensor,” Opt. Laser Technol. 42(4), 570–574 (2010).
[Crossref]

Wong, A. K. C.

A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth data by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
[Crossref]

Wong, K. Y.

K. Y. Wong, G. Zhang, and Z. Chen, “A stratified approach for camera calibration using spheres,” IEEE Trans. Image Process. 20(2), 305–316 (2011).
[Crossref] [PubMed]

H. Zhang, K. Y. Wong, and G. Zhang, “Camera calibration from images of spheres,” IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 499–502 (2007).
[Crossref] [PubMed]

Xi, J.

Yee, S.

P. Griffin, L. Narasimhan, and S. Yee, “Generation of uniquely encoded light patterns for range data acquisition,” Pattern Recognit. 25(6), 609–616 (1992).
[Crossref]

Yu, Q.

R. S. Lu, Y. F. Li, and Q. Yu, “On-line measurement of straightness of seamless steel pipe using machine vision technique,” Sens. Actuators A Phys. 94(1-2), 95–101 (2001).
[Crossref]

Yu, Y.

Zervakis, M.

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. D. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Zhang, G.

Z. Liu, F. Li, B. Huang, and G. Zhang, “Real-time and accurate rail wear measurement method and experimental analysis,” J. Opt. Soc. Am. A 31(8), 1721–1729 (2014).
[Crossref] [PubMed]

K. Y. Wong, G. Zhang, and Z. Chen, “A stratified approach for camera calibration using spheres,” IEEE Trans. Image Process. 20(2), 305–316 (2011).
[Crossref] [PubMed]

H. Zhang, K. Y. Wong, and G. Zhang, “Camera calibration from images of spheres,” IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 499–502 (2007).
[Crossref] [PubMed]

Zhang, G. J.

Z. Liu, X. J. Li, F. J. Li, and G. J. Zhang, “Calibration method for line-structured light vision sensor based a single ball target,” Opt. Lasers Eng. 69(6), 20–28 (2015).
[Crossref]

Z. Z. Wei, L. J. Cao, and G. J. Zhang, “A novel 1D target-based calibration method with unknown orientation for structured light vision sensor,” Opt. Laser Technol. 42(4), 570–574 (2010).
[Crossref]

G. J. Zhang, Z. Liu, J. H. Sun, and Z. Z. Wei, “Novel calibration method for multi-sensor visual measurement system based on structured light,” Opt. Eng. 49(4), 043602 (2010).
[Crossref]

F. Q. Zhou and G. J. Zhang, “Complete calibration of a structured light stripe vision sensor through planar target of unknown orientations,” Image Vis. Comput. 23(1), 59–67 (2005).
[Crossref]

Zhang, H.

H. Zhang, K. Y. Wong, and G. Zhang, “Camera calibration from images of spheres,” IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 499–502 (2007).
[Crossref] [PubMed]

Zhang, X.

Zhang, Z.

Z. Zhang, “Camera calibration with one-dimensional objects,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004).
[Crossref] [PubMed]

Zhang, Z. Y.

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Zhou, F. Q.

F. Q. Zhou and G. J. Zhang, “Complete calibration of a structured light stripe vision sensor through planar target of unknown orientations,” Image Vis. Comput. 23(1), 59–67 (2005).
[Crossref]

Zhu, L.

Appl. Opt. (2)

Comput. Vis. Image Underst. (1)

A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth data by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
[Crossref]

IEEE J. Robot. Autom. (1)

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses,” IEEE J. Robot. Autom. 3(4), 323–344 (1987).
[Crossref]

IEEE Trans. Image Process. (1)

K. Y. Wong, G. Zhang, and Z. Chen, “A stratified approach for camera calibration using spheres,” IEEE Trans. Image Process. 20(2), 305–316 (2011).
[Crossref] [PubMed]

IEEE Trans. Instrum. Meas. (1)

S. Shirmohammadi and A. Ferrero, “Camera as the instrument: the rising trend of vision based measurement,” IEEE Trans. Instrum. Meas. 17(3), 41–47 (2014).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (5)

C. Steger, “An unbiased detector of curvilinear structures,” IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998).
[Crossref]

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Z. Zhang, “Camera calibration with one-dimensional objects,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004).
[Crossref] [PubMed]

H. Zhang, K. Y. Wong, and G. Zhang, “Camera calibration from images of spheres,” IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 499–502 (2007).
[Crossref] [PubMed]

T. P. Koninckx and L. Van Gool, “Real-time range acquisition by adaptive structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 432–445 (2006).
[Crossref] [PubMed]

Image Vis. Comput. (2)

F. Q. Zhou and G. J. Zhang, “Complete calibration of a structured light stripe vision sensor through planar target of unknown orientations,” Image Vis. Comput. 23(1), 59–67 (2005).
[Crossref]

E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. D. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Int. J. Comput. Vis. (1)

D. Q. Huynh, R. A. Owens, and P. E. Hartmann, “Calibration a structured light stripe system: a novel approach,” Int. J. Comput. Vis. 33(1), 73–86 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

Kobe Steel Eng. Rep. (1)

A. Okamoto, Y. Wasa, and Y. Kagawa, “Development of shape measurement system for hot large forgings,” Kobe Steel Eng. Rep. 57(3), 29–33 (2007).

Meas. Sci. Technol. (1)

Y. Chen and Y. F. Li, “Self-recalibration of a colour-encoded light system for automated three-dimensional measurements,” Meas. Sci. Technol. 14(1), 33–40 (2003).
[Crossref]

Opt. Eng. (1)

G. J. Zhang, Z. Liu, J. H. Sun, and Z. Z. Wei, “Novel calibration method for multi-sensor visual measurement system based on structured light,” Opt. Eng. 49(4), 043602 (2010).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

Z. Z. Wei, L. J. Cao, and G. J. Zhang, “A novel 1D target-based calibration method with unknown orientation for structured light vision sensor,” Opt. Laser Technol. 42(4), 570–574 (2010).
[Crossref]

Opt. Lasers Eng. (1)

Z. Liu, X. J. Li, F. J. Li, and G. J. Zhang, “Calibration method for line-structured light vision sensor based a single ball target,” Opt. Lasers Eng. 69(6), 20–28 (2015).
[Crossref]

Pattern Recognit. (1)

P. Griffin, L. Narasimhan, and S. Yee, “Generation of uniquely encoded light patterns for range data acquisition,” Pattern Recognit. 25(6), 609–616 (1992).
[Crossref]

Sens. Actuators A Phys. (1)

R. S. Lu, Y. F. Li, and Q. Yu, “On-line measurement of straightness of seamless steel pipe using machine vision technique,” Sens. Actuators A Phys. 94(1-2), 95–101 (2001).
[Crossref]

Two-year. Coll. Math. J. (1)

A. R. Partridge, “Ellipses from a Circular and Spherical Point of View,” Two-year. Coll. Math. J. 14(5), 436–438 (1983).

Other (2)

J. MORE, The Levenberg-Marquardt Algorithm, Implementation and Theory (Numerical Analysis, 1977).

J. Y. Bouguet, “The MATLAB open source calibration toolbox,” http://www.vision.caltech.edu/bouguetj/calib _doc/.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Calibration process of structured light vision sensor.
Fig. 2
Fig. 2 Result of processing the light stripe in the image. (a) Image of target; (b) Extraction of the center of the light stripe in the image; (c) C 1 and C 2 obtained by ellipse fitting.
Fig. 3
Fig. 3 Result of the simulation experiment. (a) Relative errors of the calibration results at different noise levels; (b) Relative errors of the calibration results at different diameter levels.
Fig. 4
Fig. 4 Structured light vision sensor and target in the physical experiment.
Fig. 5
Fig. 5 Images of three targets captured by the vision senor in the good light environment.
Fig. 6
Fig. 6 Images of three targets captured by the vision senor in the dim light environment.
Fig. 7
Fig. 7 Images of three targets captured by the vision senor in the strong sunlight environment.
Fig. 8
Fig. 8 Images of three targets captured by the vision senor with a high-powered laser projector. (a) Images of three targets when the image of target characteristic points is clear; (b) Images of three targets when the image of the light stripe is clear.
Fig. 9
Fig. 9 Images of three targets captured by the vision senor with an optical filter.
Fig. 10
Fig. 10 Images of the parallel cylinder target captured by the vision senor in complex light environments. (a) Image captured by the vision sensor in the dim light environment; (b) Image captured by the vision sensor in the strong sunlight environment; (c) Image captured by the vision sensor with a high-powered laser projector; (d) Image captured by the vision sensor with an optical filter.
Fig. 11
Fig. 11 Images used for the calibration of intrinsic parameters of camera.
Fig. 12
Fig. 12 Images used in the calibration via the two methods (a) Five images used for calibration with the LED planar target; (b) Five images used for calibration with the proposed algorithm.
Fig. 13
Fig. 13 Measurement sites of three applications. (a) Standard rail; (b) Wheel; (c) Plaster cast.
Fig. 14
Fig. 14 Reconstructed 3D profiles using the two calibration results (a) The reconstructed 3D profile of the standard rail; (b) The reconstructed 3D profile of the wheel; (c) The reconstructed 3D profile of the plaster cast.

Tables (2)

Tables Icon

Table 1 3D coordinates of the testing points obtained using different calibration results

Tables Icon

Table 2 Assessment result of calibration precision via the two methods

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

{ α 1 = α 2 = r 1 + a ˜ 2 + b ˜ 2 c ˜ 2 f 1 = f 2 = r a ˜ 2 + b ˜ 2 c ˜ 2
{ β 1 2 = α 1 2 f 1 2 β 2 2 = α 2 2 f 2 2
β 1 = β 2 = r
[ u j v j 1 ] C j [ u j v j 1 ] = 0 ( j = 1 , 2 )
[ x j y j 1 ] Q j [ x j y j 1 ] = 0
ρ j [ u j v j 1 ] = [ a x γ u 0 0 a y v 0 0 0 1 ] [ r 1 r 2 t j ] [ x j y j 1 ] = K M j [ x j y j 1 ]
[ x j y j 1 ] M j T K T C j K M j [ x j y j 1 ] = 0
ρ j Q j = M j T K T C j K M j
ρ j [ 1 / β 2 0 0 0 1 / α 2 0 0 0 1 ] = [ r 1 T W j r 1 r 1 T W j r 2 r 1 T W j t j r 2 T W j r 1 r 2 T W j r 2 r 2 T W j t j t j T W j r 1 t j T W j r 2 t j T W j t j ]
r 1 T W 1 r 1 = ρ 1 / β 2 ; r 1 T W 2 r 1 = ρ 2 / β 2 ; r 2 T W 1 r 2 = ρ 1 / α 2 ; r 2 T W 2 r 2 = ρ 2 / α 2 ; r 1 T W 1 r 2 = 0 ; r 1 T W 2 r 2 = 0 ; r 1 T W 1 t 1 = 0 ; r 1 T W 2 t 2 = 0 ; r 2 T W 1 t 1 = 0 ; r 2 T W 2 t 2 = 0 t 1 T W 1 t 1 = ρ 1 ; t 2 T W 2 t 2 = ρ 2
β 2 r 1 T W 1 r 1 = α 2 r 2 T W 1 r 2 ; β 2 r 1 T W 2 r 1 = α 2 r 2 T W 2 r 2 ; r 1 T W 1 r 2 = 0 ; r 1 T W 2 r 2 = 0 ; r 1 T r 1 = 1 ; r 2 T r 2 = 1 ; r 1 T r 2 = 0
r 1 T W 1 t 1 = 0 ; r 1 T W 2 t 2 = 0 ; r 2 T W 1 t 1 = 0 ; r 2 T W 2 t 2 = 0 ; t 1 T W 1 t 1 = ρ 1 ; t 2 T W 2 t 2 = ρ 2
[ a b c d ] = [ R 1 t 1 0 1 ] -T [ 0 0 1 0 ]
{ ρ p ˜ = K [ I 3 × 3 0 3 × 1 ] q c a x c + b y c + c z c + d = 0
{ ρ p ˜ j i ( m ) = K [ R 1 t 1 ] q j i ( m ) z j i ( m ) = 0
f ( ε ) = min ( i = 1 n ( | β 1 i + β 2 i 2 β | + | β 1 i β 2 i | + | α 1 i α 2 i | + | φ 1 i φ 2 i | ) )

Metrics