Abstract

We have investigated numerically the narrowband absorption property of a metal-dielectric-metal based structure which includes a top metallic nanoring arrays, a metal backed plate, and a middle dielectric spacer. Its absorption is up to 90% with linewidth narrower than 10 nm. This can be explained in terms of surface lattice resonance of the periodic structure. The spectrum with the sharp absorption dip, i.e. the lattice resonance, strongly depends on the refractive index of media surrounding the nanorings. This feature can be explored to devise a refractive index sensor, of which the bulk sensitivity factor is one order larger than that based on gap resonance mode, while the surface sensitivity factor can be two times larger. The proposed narrowband absorber has potential in applications of plasmonic biosensors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoslit-microcavity-based narrow band absorber for sensing applications

Xiaoyuan Lu, Lingxuan Zhang, and Tongyi Zhang
Opt. Express 23(16) 20715-20720 (2015)

Perfect narrow band absorber for sensing applications

Shiwen Luo, Jun Zhao, Duluo Zuo, and Xinbing Wang
Opt. Express 24(9) 9288-9294 (2016)

Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface

Xiaoyuan Lu, Tongyi Zhang, Rengang Wan, Yongtao Xu, Changhong Zhao, and Sheng Guo
Opt. Express 26(8) 10179-10187 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref] [PubMed]
  2. X. Y. Lu, L. X. Zhang, and T. Y. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express ( 23, 20715–20720 (2015).
    [Crossref] [PubMed]
  3. J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
    [Crossref]
  4. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
    [Crossref] [PubMed]
  5. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [Crossref] [PubMed]
  6. X. Y. Lu, R. G. Wan, G. X. Wang, T. Y. Zhang, and W. F. Zhang, “Giant and tunable electric field enhancement in the terahertz regime,” Opt. Express 22, 27001–27006 (2014).
    [Crossref] [PubMed]
  7. Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. R. Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B. 87, 205121 (2013).
    [Crossref]
  8. C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1285 (2012).
    [Crossref] [PubMed]
  9. J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
    [Crossref] [PubMed]
  10. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
    [Crossref] [PubMed]
  11. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
    [Crossref] [PubMed]
  12. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
    [Crossref] [PubMed]
  13. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photon. 2, 295–298 (2008).
    [Crossref]
  14. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6, 9989–9995 (2012).
    [Crossref] [PubMed]
  15. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  16. J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. V. Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett. 97, 163106 (2010).
    [Crossref]
  17. X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Optic. (ahead-of-print): 1–7 (2015).
  18. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic Sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  19. R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
    [Crossref]
  20. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2, 964–970 (2015).
    [Crossref]
  21. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  22. M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nature Photon. 6, 535–539 (2012).
    [Crossref]
  23. L. J. Meng, D. Zhao, Z. C. Ruan, Q. Li, Y. Q. Yang, and M. Qiu, “Opimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39, 1137–1140 (2014).
    [Crossref] [PubMed]
  24. M. Grande, “Experimental demonstration of a novel bio-sensing platform via plasmonic band gap formation in gold nano-patch arrays,” Opt. Express 19, 21385–21395 (2011).
    [Crossref] [PubMed]
  25. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonance in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
    [Crossref] [PubMed]
  26. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19, 19310–19322 (2011).
    [Crossref] [PubMed]
  27. A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B. 90, 075404 (2014).
    [Crossref]
  28. Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
    [Crossref] [PubMed]
  29. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980) and references therein.
    [Crossref]
  30. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [Crossref]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  32. A. E. Cetin, D. Etezadi, and H. Altug, “Accessible Nearfields by Nanoantennas on Nanopedestals for Ultrasensitive Vibrational Spectroscopy,” Adv. Opt. Mat. 2, 866–872 (2014).
    [Crossref]
  33. A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Science & Applications 3, e122 (2014).
    [Crossref]
  34. S. Savoia, A. Ricciardi, and A. Crescitelli, “Surface sensitivity of Rayleigh anomalies in metallic nanogratings,” Opt. Express 21, 2351–2362 (2013).
    [Crossref]
  35. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
    [Crossref]

2015 (2)

X. Y. Lu, L. X. Zhang, and T. Y. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express ( 23, 20715–20720 (2015).
[Crossref] [PubMed]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

2014 (6)

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B. 90, 075404 (2014).
[Crossref]

Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

A. E. Cetin, D. Etezadi, and H. Altug, “Accessible Nearfields by Nanoantennas on Nanopedestals for Ultrasensitive Vibrational Spectroscopy,” Adv. Opt. Mat. 2, 866–872 (2014).
[Crossref]

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Science & Applications 3, e122 (2014).
[Crossref]

L. J. Meng, D. Zhao, Z. C. Ruan, Q. Li, Y. Q. Yang, and M. Qiu, “Opimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39, 1137–1140 (2014).
[Crossref] [PubMed]

X. Y. Lu, R. G. Wan, G. X. Wang, T. Y. Zhang, and W. F. Zhang, “Giant and tunable electric field enhancement in the terahertz regime,” Opt. Express 22, 27001–27006 (2014).
[Crossref] [PubMed]

2013 (3)

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. R. Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B. 87, 205121 (2013).
[Crossref]

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

S. Savoia, A. Ricciardi, and A. Crescitelli, “Surface sensitivity of Rayleigh anomalies in metallic nanogratings,” Opt. Express 21, 2351–2362 (2013).
[Crossref]

2012 (4)

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nature Photon. 6, 535–539 (2012).
[Crossref]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
[Crossref] [PubMed]

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1285 (2012).
[Crossref] [PubMed]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6, 9989–9995 (2012).
[Crossref] [PubMed]

2011 (7)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[Crossref] [PubMed]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

M. Grande, “Experimental demonstration of a novel bio-sensing platform via plasmonic band gap formation in gold nano-patch arrays,” Opt. Express 19, 21385–21395 (2011).
[Crossref] [PubMed]

M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19, 19310–19322 (2011).
[Crossref] [PubMed]

2010 (7)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonance in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. V. Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett. 97, 163106 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic Sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

2008 (1)

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photon. 2, 295–298 (2008).
[Crossref]

2004 (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980) and references therein.
[Crossref]

1965 (1)

Albrektsen, O.

Altug, H.

A. E. Cetin, D. Etezadi, and H. Altug, “Accessible Nearfields by Nanoantennas on Nanopedestals for Ultrasensitive Vibrational Spectroscopy,” Adv. Opt. Mat. 2, 866–872 (2014).
[Crossref]

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Science & Applications 3, e122 (2014).
[Crossref]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6, 9989–9995 (2012).
[Crossref] [PubMed]

Ameling, R.

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Apell, S. P.

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1285 (2012).
[Crossref] [PubMed]

Asano, T.

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nature Photon. 6, 535–539 (2012).
[Crossref]

Atwater, H. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Averitt, R. D.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photon. 2, 295–298 (2008).
[Crossref]

Aydin, K.

Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Azad, A. K.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photon. 2, 295–298 (2008).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B. 90, 075404 (2014).
[Crossref]

Bozhevolnyi, S. I.

Braun, P. V.

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Butun, S.

Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

Cai, W. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonance in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Cetin, A. E.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Science & Applications 3, e122 (2014).
[Crossref]

A. E. Cetin, D. Etezadi, and H. Altug, “Accessible Nearfields by Nanoantennas on Nanopedestals for Ultrasensitive Vibrational Spectroscopy,” Adv. Opt. Mat. 2, 866–872 (2014).
[Crossref]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6, 9989–9995 (2012).
[Crossref] [PubMed]

Chen, H. T.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photon. 2, 295–298 (2008).
[Crossref]

Chen, K.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Chen, L.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

Copner, N.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. R. Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B. 87, 205121 (2013).
[Crossref]

Coskun, A. F.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Science & Applications 3, e122 (2014).
[Crossref]

Crescitelli, A.

S. Savoia, A. Ricciardi, and A. Crescitelli, “Surface sensitivity of Rayleigh anomalies in metallic nanogratings,” Opt. Express 21, 2351–2362 (2013).
[Crossref]

Dao, T. D.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Dorpe, P. V.

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. V. Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett. 97, 163106 (2010).
[Crossref]

Duan, L.

Etezadi, D.

A. E. Cetin, D. Etezadi, and H. Altug, “Accessible Nearfields by Nanoantennas on Nanopedestals for Ultrasensitive Vibrational Spectroscopy,” Adv. Opt. Mat. 2, 866–872 (2014).
[Crossref]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonance in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Galarreta, B. C.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Science & Applications 3, e122 (2014).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic Sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Gong, Y. K.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. R. Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B. 87, 205121 (2013).
[Crossref]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

Gramotnev, D. K.

Grande, M.

Hägglund, C.

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1285 (2012).
[Crossref] [PubMed]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonance in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Hentschel, M.

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic Sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Herman, D.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Science & Applications 3, e122 (2014).
[Crossref]

Huang, J.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. R. Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B. 87, 205121 (2013).
[Crossref]

Huang, M.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Science & Applications 3, e122 (2014).
[Crossref]

Huang, W. P.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

Humphrey, A. D.

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B. 90, 075404 (2014).
[Crossref]

Inoue, T.

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nature Photon. 6, 535–539 (2012).
[Crossref]

Ishii, S.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

Kawamura, T.

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. V. Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett. 97, 163106 (2010).
[Crossref]

Kelaita, Y. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref] [PubMed]

Kimerling, L. C.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

Kitajima, M.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonance in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Lagae, L.

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. V. Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett. 97, 163106 (2010).
[Crossref]

Langguth, L.

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonance in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980) and references therein.
[Crossref]

Li, K.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. R. Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B. 87, 205121 (2013).
[Crossref]

Li, Q.

Li, X.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

Li, Z. Y.

Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

Liu, F.

X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Optic. (ahead-of-print): 1–7 (2015).

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic Sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

Lodewijks, K.

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. V. Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett. 97, 163106 (2010).
[Crossref]

Lu, H.

Lu, X. Y.

Malitson, I. H.

Mao, D.

Martinez, J. J.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. R. Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B. 87, 205121 (2013).
[Crossref]

Meng, L. J.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic Sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Meshch, M.

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Michel, J.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

Mochizuki, K.

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nature Photon. 6, 535–539 (2012).
[Crossref]

Mu, J. W.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

Nabatame, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Nagao, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Nielsen, M. G.

Noda, S.

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nature Photon. 6, 535–539 (2012).
[Crossref]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonance in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

O’Hara, J. F.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photon. 2, 295–298 (2008).
[Crossref]

Ohi, A.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Oskooi, A.

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nature Photon. 6, 535–539 (2012).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Ozcan, A.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Science & Applications 3, e122 (2014).
[Crossref]

Padilla, W. J.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photon. 2, 295–298 (2008).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Plum, E.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Pors, A.

Pryce, I. M.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref] [PubMed]

Qiu, M.

Ricciardi, A.

S. Savoia, A. Ricciardi, and A. Crescitelli, “Surface sensitivity of Rayleigh anomalies in metallic nanogratings,” Opt. Express 21, 2351–2362 (2013).
[Crossref]

Ruan, Z. C.

Savoia, S.

S. Savoia, A. Ricciardi, and A. Crescitelli, “Surface sensitivity of Rayleigh anomalies in metallic nanogratings,” Opt. Express 21, 2351–2362 (2013).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Shioi, M.

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. V. Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett. 97, 163106 (2010).
[Crossref]

Shrekenhamer, D. B.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photon. 2, 295–298 (2008).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonance in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Taylor, A. J.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photon. 2, 295–298 (2008).
[Crossref]

Wan, R. G.

X. Y. Lu, R. G. Wan, G. X. Wang, T. Y. Zhang, and W. F. Zhang, “Giant and tunable electric field enhancement in the terahertz regime,” Opt. Express 22, 27001–27006 (2014).
[Crossref] [PubMed]

X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Optic. (ahead-of-print): 1–7 (2015).

Wang, G.

Wang, G. X.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic Sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Whippey, D. R.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. R. Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B. 87, 205121 (2013).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Yang, Y. Q.

Ye, J.

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. V. Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett. 97, 163106 (2010).
[Crossref]

Zhang, L. X.

Zhang, T. Y.

Zhang, W. F.

Zhao, D.

Zheludev, N. I.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Zoysa, M. D.

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nature Photon. 6, 535–539 (2012).
[Crossref]

ACS Nano (3)

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref] [PubMed]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6, 9989–9995 (2012).
[Crossref] [PubMed]

Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Adv. Opt. Mat. (1)

A. E. Cetin, D. Etezadi, and H. Altug, “Accessible Nearfields by Nanoantennas on Nanopedestals for Ultrasensitive Vibrational Spectroscopy,” Adv. Opt. Mat. 2, 866–872 (2014).
[Crossref]

Appl. Phys. Lett. (3)

R. Ameling, L. Langguth, M. Hentschel, M. Meshch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. V. Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett. 97, 163106 (2010).
[Crossref]

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Lett. (1)

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1285 (2012).
[Crossref] [PubMed]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980) and references therein.
[Crossref]

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815 (2004).
[Crossref]

Light: Science & Applications (1)

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Science & Applications 3, e122 (2014).
[Crossref]

Nano Lett. (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic Sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonance in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Nature Photon. (2)

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nature Photon. 6, 535–539 (2012).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photon. 2, 295–298 (2008).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. B. (2)

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. R. Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B. 87, 205121 (2013).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B. 90, 075404 (2014).
[Crossref]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Other (2)

X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” J. Mod. Optic. (ahead-of-print): 1–7 (2015).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the MRAM structure. “DL” denotes Dielectric Layer. As a refractive index sensor, the measured sample is distributed on top of the periodic surface, which is denoted by the transparent light blue color in the red dashed line box.
Fig. 2
Fig. 2 (a) Reflective, transmission, and absorption spectra of the MRAM structure. LR and GR represent surface lattice plasmonic resonance and gap plasmonic resonance, respectively. (b)–(i) Electric field and magnetic field distributions at resonances A and B. Parameters: p = 0.9 μm, D = 0.366 μm, d = 0.2 μm, t = 57 nm, h = 35 nm, and L = 0.1 μm. In calculations, maximum mesh sizes in the x, y, and z directions are all set as 0.01 μm.
Fig. 3
Fig. 3 (a) Resonance wavelength as a function of the sample refractive index on top of the MRAM structure. (b) Reflective spectrum (n = 1.312) and FOM* curve. Parameters: p = 900 nm, t = 57 nm, d = 200 nm, D = 366 nm, h = 35 nm, and L = 100 nm.
Fig. 4
Fig. 4 (a) Reflective spectra for SLR. Inset shows the cross section of the MRAM when the protein sample is adsorbed only on the gold nanorings surface. BNR and PL refer two different cases, which are the abbreviations of MRAM with bare nanorings and MRAM with nanorings with the adsorbed thin protein layer, respectively. The sample layer thickness is set as 8 nm. (b) Surface sensitivity and reflectivity dip for SLR mode as a function of the thickness of adsorbed protein layer. Parameters: p = 900 nm, t = 57 nm, d = 200 nm, D = 366 nm, h = 35 nm, and L = 100 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = Δ λ / Δ n , FOM = S / FWHM , S * = Δ I / Δ n , FOM * = S * / I .

Metrics