Abstract

Based on the polarization switching mechanism in an optically injected vertical cavity surface emitting laser (VCSEL), and the new electro-optic modulation theory, we propose a novel approach to implement optoelectric logic gates. Here, the two linearly polarized lights from the output of the laser are considered as two logic outputs. Under the electro-optic modulation, one of the logic outputs is the NOT operation with the other one. With the same logic input signal, we perform various digital signal processing (AND, OR, XNOR, NAND, NOR and XOR) in the optical domain, controlling the logic operation of the applied electric field between the two logic input signals. On this basis, the logic operation of half-adder is further implemented.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Dongzhou Zhong, Yongqiang Ji, and Wei Luo, "Controllable optoelectric composite logic gates based on the polarization switching in an optically injected VCSEL: erratum," Opt. Express 23, 31295-31295 (2015)
http://proxy.osapublishing.org/oe/abstract.cfm?uri=oe-23-24-31295

OSA Recommended Articles
Stochastic logic gate that exploits noise and polarization bistability in an optically injected VCSEL

Sandro Perrone, Ramon Vilaseca, and Cristina Masoller
Opt. Express 20(20) 22692-22699 (2012)

All-optical logic gates based on unidirectional surface plasmon polaritons

Ping Li, Yongxing Wang, and Ping Xu
Appl. Opt. 58(16) 4205-4210 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Koyama, “Recent advances of VCSEL Photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
    [Crossref]
  2. S. F. Liu, G. Xia, J. G. Xia, and Z. M. Wu, “Improving chaotic carrier fundamental frequency in VCSELs with optical feedback by strong light injection,” Wuli Xuebao 57(3), 1502–1505 (2008).
  3. Y. H. Hong, J. Paul, and P. S. Spencer, “The effects of polarization resolved optical feedback on the relative intensity noise and polarization stability of vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 24(8), 3210–3216 (2006).
    [Crossref]
  4. M. A. Arteaga, H. J. Unold, M. Ostermann, R. Michalzik, H. Thienpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extermely short external cavity-partII:Experiments,” IEEE J. Quantum Electron. 42(2), 102–107 (2006).
    [Crossref]
  5. V. M. Deshmukh, S. H. Lee, D. W. Kim, K. H. Kim, and M. H. Lee, “Experimental and numerical analysis on temporal dynamics of polarization switching in an injection-locked 1.55-μm wavelength VCSEL,” Opt. Express 19(18), 16934–16949 (2011).
    [Crossref] [PubMed]
  6. J. Liu, Z. M. Wu, and G. Q. Xia, “Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection,” Opt. Express 17(15), 12619–12626 (2009).
    [Crossref] [PubMed]
  7. D. Z. Zhong, G. Q. Xia, F. Wang, and Z. M. Wu, “Vectorial chaotic synchronization characteristics of unidrectionally coupled and injected vertical-cavity surface-emitting lasers based on feedback,” Acta Physica Sinica 65(6), 3279–3292 (2007).(In Chinese)
  8. D. Z. Zhong and Z. M. Wu, “Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback,” Opt. Commun. 282(8), 1631–1639 (2009).
    [Crossref]
  9. D. Z. Zhong, G. Q. Xia, Z.-M. Wu, and X.-H. Jia, “Complete chaotic synchronization characteristics of the linear-polarization mode of vertical-cavity surface-emitting semiconductor lasers with isotropic optical feedback,” Opt. Commun. 281(6), 1698–1709 (2008).
    [Crossref]
  10. D. Z. Zhong and Z. M. Wu, “Manipulation of the vector chaotic polarization of VCSEL output with external optical feedback by electro-optic modulation,” Wuli Xuebao 61(3), 154–163 (2012).
  11. T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
    [Crossref]
  12. P. Guo, W. Yang, D. Parekh, C. J. Chang-Hasnain, A. Xu, and Z. Chen, “Experimental and theoretical study of wide hysteresis cycles in 1550 nm VCSELs under optical injection,” Opt. Express 21(3), 3125–3132 (2013).
    [Crossref] [PubMed]
  13. Y. Li, Z. M. Wu, Z. Q. Zhong, X. J. Yang, S. Mao, and G. Q. Xia, “Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback,” Opt. Express 22(16), 19610–19620 (2014).
    [Crossref] [PubMed]
  14. J. Zamora-Munt and C. Masoller, “Numerical implementation of a VCSEL-based stochastic logic gate via polarization bistability,” Opt. Express 18(16), 16418–16429 (2010).
    [Crossref] [PubMed]
  15. S. Perrone, R. Vilaseca, and C. Masoller, “Stochastic logic gate that exploits noise and polarization bistability in an optically injected VCSEL,” Opt. Express 20(20), 22692–22699 (2012).
    [Crossref] [PubMed]
  16. M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
    [Crossref]
  17. D. Z. Zhong, Y. Q. Ji, T. Deng, and K. L. Zhou, “Manipulation of the polarization switching and the nonlinear dynamic behaviors of the vertical-cavity surface-emitting laser subject to optical injection by EO modulation,” Acta Physica Sinica 64(11), 134–147 (2015).
  18. W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1–4), 303–311 (2001).
    [Crossref]
  19. T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
    [Crossref]
  20. M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
    [Crossref] [PubMed]
  21. G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-Matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006).
    [Crossref] [PubMed]
  22. M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
    [Crossref]
  23. R. Vicente, J. Mulet, C. R. Mirasso, and M. Sciamanna, “Polarization switching dynamics and bistability in mutually coupled vertical cavity surface emitting lasers,” Semiconductor Lasers and Lasers Dynamics II, Proc. SPIE 6184, 6184413 (2006).
    [Crossref]

2015 (1)

D. Z. Zhong, Y. Q. Ji, T. Deng, and K. L. Zhou, “Manipulation of the polarization switching and the nonlinear dynamic behaviors of the vertical-cavity surface-emitting laser subject to optical injection by EO modulation,” Acta Physica Sinica 64(11), 134–147 (2015).

2014 (1)

2013 (2)

P. Guo, W. Yang, D. Parekh, C. J. Chang-Hasnain, A. Xu, and Z. Chen, “Experimental and theoretical study of wide hysteresis cycles in 1550 nm VCSELs under optical injection,” Opt. Express 21(3), 3125–3132 (2013).
[Crossref] [PubMed]

M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
[Crossref]

2012 (2)

S. Perrone, R. Vilaseca, and C. Masoller, “Stochastic logic gate that exploits noise and polarization bistability in an optically injected VCSEL,” Opt. Express 20(20), 22692–22699 (2012).
[Crossref] [PubMed]

D. Z. Zhong and Z. M. Wu, “Manipulation of the vector chaotic polarization of VCSEL output with external optical feedback by electro-optic modulation,” Wuli Xuebao 61(3), 154–163 (2012).

2011 (1)

2010 (1)

2009 (3)

J. Liu, Z. M. Wu, and G. Q. Xia, “Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection,” Opt. Express 17(15), 12619–12626 (2009).
[Crossref] [PubMed]

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[Crossref]

D. Z. Zhong and Z. M. Wu, “Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback,” Opt. Commun. 282(8), 1631–1639 (2009).
[Crossref]

2008 (2)

D. Z. Zhong, G. Q. Xia, Z.-M. Wu, and X.-H. Jia, “Complete chaotic synchronization characteristics of the linear-polarization mode of vertical-cavity surface-emitting semiconductor lasers with isotropic optical feedback,” Opt. Commun. 281(6), 1698–1709 (2008).
[Crossref]

S. F. Liu, G. Xia, J. G. Xia, and Z. M. Wu, “Improving chaotic carrier fundamental frequency in VCSELs with optical feedback by strong light injection,” Wuli Xuebao 57(3), 1502–1505 (2008).

2007 (2)

D. Z. Zhong, G. Q. Xia, F. Wang, and Z. M. Wu, “Vectorial chaotic synchronization characteristics of unidrectionally coupled and injected vertical-cavity surface-emitting lasers based on feedback,” Acta Physica Sinica 65(6), 3279–3292 (2007).(In Chinese)

T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
[Crossref]

2006 (5)

G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-Matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006).
[Crossref] [PubMed]

R. Vicente, J. Mulet, C. R. Mirasso, and M. Sciamanna, “Polarization switching dynamics and bistability in mutually coupled vertical cavity surface emitting lasers,” Semiconductor Lasers and Lasers Dynamics II, Proc. SPIE 6184, 6184413 (2006).
[Crossref]

Y. H. Hong, J. Paul, and P. S. Spencer, “The effects of polarization resolved optical feedback on the relative intensity noise and polarization stability of vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 24(8), 3210–3216 (2006).
[Crossref]

M. A. Arteaga, H. J. Unold, M. Ostermann, R. Michalzik, H. Thienpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extermely short external cavity-partII:Experiments,” IEEE J. Quantum Electron. 42(2), 102–107 (2006).
[Crossref]

F. Koyama, “Recent advances of VCSEL Photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
[Crossref]

2001 (1)

W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1–4), 303–311 (2001).
[Crossref]

1995 (1)

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

1966 (1)

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[Crossref]

Arteaga, M. A.

M. A. Arteaga, H. J. Unold, M. Ostermann, R. Michalzik, H. Thienpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extermely short external cavity-partII:Experiments,” IEEE J. Quantum Electron. 42(2), 102–107 (2006).
[Crossref]

Chang-Hasnain, C. J.

Chen, Z.

Deng, T.

D. Z. Zhong, Y. Q. Ji, T. Deng, and K. L. Zhou, “Manipulation of the polarization switching and the nonlinear dynamic behaviors of the vertical-cavity surface-emitting laser subject to optical injection by EO modulation,” Acta Physica Sinica 64(11), 134–147 (2015).

Deshmukh, V. M.

Feng, Q.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Guo, P.

Hobden, M. V.

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[Crossref]

Hong, Y. H.

Izutsu, M.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
[Crossref]

Ji, Y. Q.

D. Z. Zhong, Y. Q. Ji, T. Deng, and K. L. Zhou, “Manipulation of the polarization switching and the nonlinear dynamic behaviors of the vertical-cavity surface-emitting laser subject to optical injection by EO modulation,” Acta Physica Sinica 64(11), 134–147 (2015).

Jia, X.-H.

D. Z. Zhong, G. Q. Xia, Z.-M. Wu, and X.-H. Jia, “Complete chaotic synchronization characteristics of the linear-polarization mode of vertical-cavity surface-emitting semiconductor lasers with isotropic optical feedback,” Opt. Commun. 281(6), 1698–1709 (2008).
[Crossref]

Katayama, T.

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[Crossref]

Kawaguchi, H.

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[Crossref]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
[Crossref]

Kim, D. W.

Kim, K. H.

Koyama, F.

Lee, M. H.

Lee, S. H.

Lee, W. K.

W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1–4), 303–311 (2001).
[Crossref]

Li, Y.

Liu, J.

Liu, S. F.

S. F. Liu, G. Xia, J. G. Xia, and Z. M. Wu, “Improving chaotic carrier fundamental frequency in VCSELs with optical feedback by strong light injection,” Wuli Xuebao 57(3), 1502–1505 (2008).

Mao, S.

Masoller, C.

Michalzik, R.

M. A. Arteaga, H. J. Unold, M. Ostermann, R. Michalzik, H. Thienpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extermely short external cavity-partII:Experiments,” IEEE J. Quantum Electron. 42(2), 102–107 (2006).
[Crossref]

Mirasso, C. R.

R. Vicente, J. Mulet, C. R. Mirasso, and M. Sciamanna, “Polarization switching dynamics and bistability in mutually coupled vertical cavity surface emitting lasers,” Semiconductor Lasers and Lasers Dynamics II, Proc. SPIE 6184, 6184413 (2006).
[Crossref]

Moloney, J. V.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Mulet, J.

R. Vicente, J. Mulet, C. R. Mirasso, and M. Sciamanna, “Polarization switching dynamics and bistability in mutually coupled vertical cavity surface emitting lasers,” Semiconductor Lasers and Lasers Dynamics II, Proc. SPIE 6184, 6184413 (2006).
[Crossref]

Ooi, T.

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[Crossref]

Ostermann, M.

M. A. Arteaga, H. J. Unold, M. Ostermann, R. Michalzik, H. Thienpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extermely short external cavity-partII:Experiments,” IEEE J. Quantum Electron. 42(2), 102–107 (2006).
[Crossref]

Panajotov, K.

M. A. Arteaga, H. J. Unold, M. Ostermann, R. Michalzik, H. Thienpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extermely short external cavity-partII:Experiments,” IEEE J. Quantum Electron. 42(2), 102–107 (2006).
[Crossref]

Parekh, D.

Paul, J.

Perrone, S.

Sakamoto, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
[Crossref]

Salvide, M. F.

M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
[Crossref]

San Miguel, M.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Sciamanna, M.

R. Vicente, J. Mulet, C. R. Mirasso, and M. Sciamanna, “Polarization switching dynamics and bistability in mutually coupled vertical cavity surface emitting lasers,” Semiconductor Lasers and Lasers Dynamics II, Proc. SPIE 6184, 6184413 (2006).
[Crossref]

She, W.

She, W. L.

W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1–4), 303–311 (2001).
[Crossref]

Spencer, P. S.

Thienpont, H.

M. A. Arteaga, H. J. Unold, M. Ostermann, R. Michalzik, H. Thienpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extermely short external cavity-partII:Experiments,” IEEE J. Quantum Electron. 42(2), 102–107 (2006).
[Crossref]

Torre, M. S.

M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
[Crossref]

Unold, H. J.

M. A. Arteaga, H. J. Unold, M. Ostermann, R. Michalzik, H. Thienpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extermely short external cavity-partII:Experiments,” IEEE J. Quantum Electron. 42(2), 102–107 (2006).
[Crossref]

Vicente, R.

R. Vicente, J. Mulet, C. R. Mirasso, and M. Sciamanna, “Polarization switching dynamics and bistability in mutually coupled vertical cavity surface emitting lasers,” Semiconductor Lasers and Lasers Dynamics II, Proc. SPIE 6184, 6184413 (2006).
[Crossref]

Vilaseca, R.

Wang, F.

D. Z. Zhong, G. Q. Xia, F. Wang, and Z. M. Wu, “Vectorial chaotic synchronization characteristics of unidrectionally coupled and injected vertical-cavity surface-emitting lasers based on feedback,” Acta Physica Sinica 65(6), 3279–3292 (2007).(In Chinese)

Wang, H.

Warner, J.

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[Crossref]

Wu, Z. M.

Y. Li, Z. M. Wu, Z. Q. Zhong, X. J. Yang, S. Mao, and G. Q. Xia, “Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback,” Opt. Express 22(16), 19610–19620 (2014).
[Crossref] [PubMed]

D. Z. Zhong and Z. M. Wu, “Manipulation of the vector chaotic polarization of VCSEL output with external optical feedback by electro-optic modulation,” Wuli Xuebao 61(3), 154–163 (2012).

D. Z. Zhong and Z. M. Wu, “Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback,” Opt. Commun. 282(8), 1631–1639 (2009).
[Crossref]

J. Liu, Z. M. Wu, and G. Q. Xia, “Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection,” Opt. Express 17(15), 12619–12626 (2009).
[Crossref] [PubMed]

S. F. Liu, G. Xia, J. G. Xia, and Z. M. Wu, “Improving chaotic carrier fundamental frequency in VCSELs with optical feedback by strong light injection,” Wuli Xuebao 57(3), 1502–1505 (2008).

D. Z. Zhong, G. Q. Xia, F. Wang, and Z. M. Wu, “Vectorial chaotic synchronization characteristics of unidrectionally coupled and injected vertical-cavity surface-emitting lasers based on feedback,” Acta Physica Sinica 65(6), 3279–3292 (2007).(In Chinese)

Wu, Z.-M.

D. Z. Zhong, G. Q. Xia, Z.-M. Wu, and X.-H. Jia, “Complete chaotic synchronization characteristics of the linear-polarization mode of vertical-cavity surface-emitting semiconductor lasers with isotropic optical feedback,” Opt. Commun. 281(6), 1698–1709 (2008).
[Crossref]

Xia, G.

S. F. Liu, G. Xia, J. G. Xia, and Z. M. Wu, “Improving chaotic carrier fundamental frequency in VCSELs with optical feedback by strong light injection,” Wuli Xuebao 57(3), 1502–1505 (2008).

Xia, G. Q.

Y. Li, Z. M. Wu, Z. Q. Zhong, X. J. Yang, S. Mao, and G. Q. Xia, “Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback,” Opt. Express 22(16), 19610–19620 (2014).
[Crossref] [PubMed]

J. Liu, Z. M. Wu, and G. Q. Xia, “Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection,” Opt. Express 17(15), 12619–12626 (2009).
[Crossref] [PubMed]

D. Z. Zhong, G. Q. Xia, Z.-M. Wu, and X.-H. Jia, “Complete chaotic synchronization characteristics of the linear-polarization mode of vertical-cavity surface-emitting semiconductor lasers with isotropic optical feedback,” Opt. Commun. 281(6), 1698–1709 (2008).
[Crossref]

D. Z. Zhong, G. Q. Xia, F. Wang, and Z. M. Wu, “Vectorial chaotic synchronization characteristics of unidrectionally coupled and injected vertical-cavity surface-emitting lasers based on feedback,” Acta Physica Sinica 65(6), 3279–3292 (2007).(In Chinese)

Xia, J. G.

S. F. Liu, G. Xia, J. G. Xia, and Z. M. Wu, “Improving chaotic carrier fundamental frequency in VCSELs with optical feedback by strong light injection,” Wuli Xuebao 57(3), 1502–1505 (2008).

Xu, A.

Yang, W.

Yang, X. J.

Zamora-Munt, J.

Zheng, G.

Zhong, D. Z.

D. Z. Zhong, Y. Q. Ji, T. Deng, and K. L. Zhou, “Manipulation of the polarization switching and the nonlinear dynamic behaviors of the vertical-cavity surface-emitting laser subject to optical injection by EO modulation,” Acta Physica Sinica 64(11), 134–147 (2015).

D. Z. Zhong and Z. M. Wu, “Manipulation of the vector chaotic polarization of VCSEL output with external optical feedback by electro-optic modulation,” Wuli Xuebao 61(3), 154–163 (2012).

D. Z. Zhong and Z. M. Wu, “Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback,” Opt. Commun. 282(8), 1631–1639 (2009).
[Crossref]

D. Z. Zhong, G. Q. Xia, Z.-M. Wu, and X.-H. Jia, “Complete chaotic synchronization characteristics of the linear-polarization mode of vertical-cavity surface-emitting semiconductor lasers with isotropic optical feedback,” Opt. Commun. 281(6), 1698–1709 (2008).
[Crossref]

D. Z. Zhong, G. Q. Xia, F. Wang, and Z. M. Wu, “Vectorial chaotic synchronization characteristics of unidrectionally coupled and injected vertical-cavity surface-emitting lasers based on feedback,” Acta Physica Sinica 65(6), 3279–3292 (2007).(In Chinese)

Zhong, Z. Q.

Zhou, K. L.

D. Z. Zhong, Y. Q. Ji, T. Deng, and K. L. Zhou, “Manipulation of the polarization switching and the nonlinear dynamic behaviors of the vertical-cavity surface-emitting laser subject to optical injection by EO modulation,” Acta Physica Sinica 64(11), 134–147 (2015).

Acta Physica Sinica (2)

D. Z. Zhong, G. Q. Xia, F. Wang, and Z. M. Wu, “Vectorial chaotic synchronization characteristics of unidrectionally coupled and injected vertical-cavity surface-emitting lasers based on feedback,” Acta Physica Sinica 65(6), 3279–3292 (2007).(In Chinese)

D. Z. Zhong, Y. Q. Ji, T. Deng, and K. L. Zhou, “Manipulation of the polarization switching and the nonlinear dynamic behaviors of the vertical-cavity surface-emitting laser subject to optical injection by EO modulation,” Acta Physica Sinica 64(11), 134–147 (2015).

IEEE J. Quantum Electron. (3)

M. A. Arteaga, H. J. Unold, M. Ostermann, R. Michalzik, H. Thienpont, and K. Panajotov, “Investigation of polarization properties of VCSELs subject to optical feedback from an extermely short external cavity-partII:Experiments,” IEEE J. Quantum Electron. 42(2), 102–107 (2006).
[Crossref]

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[Crossref]

M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (3)

D. Z. Zhong and Z. M. Wu, “Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback,” Opt. Commun. 282(8), 1631–1639 (2009).
[Crossref]

D. Z. Zhong, G. Q. Xia, Z.-M. Wu, and X.-H. Jia, “Complete chaotic synchronization characteristics of the linear-polarization mode of vertical-cavity surface-emitting semiconductor lasers with isotropic optical feedback,” Opt. Commun. 281(6), 1698–1709 (2008).
[Crossref]

W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1–4), 303–311 (2001).
[Crossref]

Opt. Express (7)

G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-Matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006).
[Crossref] [PubMed]

J. Liu, Z. M. Wu, and G. Q. Xia, “Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection,” Opt. Express 17(15), 12619–12626 (2009).
[Crossref] [PubMed]

J. Zamora-Munt and C. Masoller, “Numerical implementation of a VCSEL-based stochastic logic gate via polarization bistability,” Opt. Express 18(16), 16418–16429 (2010).
[Crossref] [PubMed]

V. M. Deshmukh, S. H. Lee, D. W. Kim, K. H. Kim, and M. H. Lee, “Experimental and numerical analysis on temporal dynamics of polarization switching in an injection-locked 1.55-μm wavelength VCSEL,” Opt. Express 19(18), 16934–16949 (2011).
[Crossref] [PubMed]

S. Perrone, R. Vilaseca, and C. Masoller, “Stochastic logic gate that exploits noise and polarization bistability in an optically injected VCSEL,” Opt. Express 20(20), 22692–22699 (2012).
[Crossref] [PubMed]

P. Guo, W. Yang, D. Parekh, C. J. Chang-Hasnain, A. Xu, and Z. Chen, “Experimental and theoretical study of wide hysteresis cycles in 1550 nm VCSELs under optical injection,” Opt. Express 21(3), 3125–3132 (2013).
[Crossref] [PubMed]

Y. Li, Z. M. Wu, Z. Q. Zhong, X. J. Yang, S. Mao, and G. Q. Xia, “Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback,” Opt. Express 22(16), 19610–19620 (2014).
[Crossref] [PubMed]

Phys. Lett. (1)

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[Crossref]

Phys. Rev. A (1)

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Semiconductor Lasers and Lasers Dynamics II, Proc. SPIE (1)

R. Vicente, J. Mulet, C. R. Mirasso, and M. Sciamanna, “Polarization switching dynamics and bistability in mutually coupled vertical cavity surface emitting lasers,” Semiconductor Lasers and Lasers Dynamics II, Proc. SPIE 6184, 6184413 (2006).
[Crossref]

Wuli Xuebao (2)

D. Z. Zhong and Z. M. Wu, “Manipulation of the vector chaotic polarization of VCSEL output with external optical feedback by electro-optic modulation,” Wuli Xuebao 61(3), 154–163 (2012).

S. F. Liu, G. Xia, J. G. Xia, and Z. M. Wu, “Improving chaotic carrier fundamental frequency in VCSELs with optical feedback by strong light injection,” Wuli Xuebao 57(3), 1502–1505 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of optoelectric composite logic gate based the VCSEL subjected to external optical injection, where M-VCSEL, master VCSEL; S-VCSEL, slave VCSEL; IS, isolator; PPLN, periodically poled LiNbO3; μM and μS, the normalized injection current of the M-VCSEL and the S-VCSEL, respectively; PBS, polarization beam-splitter; POI, parallel optical injection; TEF, transverse electric field; HWP, half wave plate; FR, Faraday rotator; M, the mirror; VA, the variable attenutor. The applied electric field E0 is digital square wave; A1 and A2, logic input signals; Y1 and Y2, logic output signals.
Fig. 2
Fig. 2 Time traces of the two logic inputs, the injection current, the applied electric field, the output x-LP and y-LP, and the logic outputs of AND, NAND, OR, NOR, XNOR and XOR operations when μS = 1.2 and kinj = 10ns-1. Here, (a): time traces of the injection currents and its associated logic inputs; (b): AND and NAND operations; (c): OR and NOR operations; (d) XNOR and XOR operations.
Fig. 3
Fig. 3 Schematic diagram of the implementation scheme for logic half-adder operation Here, the upper system is used to realize Carry operation; the lower one is applied to implement Sum operation. The S-VCSEL1 and the S-VCSEL2 have the same injection current μs, and are subjected to the same optical injection. all parameters here are the same as that in Fig. 1; C represents the Carry output for half-adder, and S denotes the Sum output for half-adder; μM = μ1 + μ2.
Fig. 4
Fig. 4 The logic operation half-adder, time traces of the logic inputs, the injection currents, the applied electric field, the output polarization and the logic outputs of Carry and Sum for half-adder operation when μS = 1.2 and kinj = 10ns−1. Here, (a) the temporal waveforms of the injection current; (b) the output of Carry (C) and Sum (S) for half-adder. Here, ES1x, and E ˜ 01 , the amplitude of the x-LP from the S-VCSEL1 and its associated logic, respectively; ES2y and E ˜ 02 , the amplitude of the y-LP from the S-VCSEL2 and its associated logic, respectively.

Tables (5)

Tables Icon

Table 1 Numerical values for optoelectric logic gates design

Tables Icon

Table 2 Relationship between the logic inputs, the injection current, the external applied electric field, the output polarization and the logic outputs for AND and NAND operations

Tables Icon

Table 3 Relationship between the logic inputs, the injection current, the external applied electric field, the output polarization and the logic output for OR and NOR operations

Tables Icon

Table 4 Relationship between the two logic inputs, the injection current, the external applied electric field, the output polarization and the logic output for XNOR and XOR operations

Tables Icon

Table 5 Relationship between the logic inputs, the injection current, the external applied electric field, the output polarization and the logic output for the half-adder operation

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

d dt ( E Mx (t) E My (t) )=k(1+ia)[ N M (t)1]( E Mx (t) E (t) My )±ik(1+ia) n M (t)( E My (t) E Mx (t) ) ( γ a +i γ p )( E Mx (t) E My (t) )+( [ β sp ( N M (t)+ n M (t))/2 ] 1/2 i [ β sp ( N M (t)+ n M (t))/2] 1/2 ) ξ 1 +( [ β sp ( N M (t) n M (t))/2 ] 1/2 i [ β sp ( N M (t) n M (t))/2 ] 1/2 ) ξ 2 ,
d N M (t) dt = γ e { N M (t) μ M + N M (t)(| E Mx (t) | 2 +| E My (t) | 2 )+in (t) M [ E My (t) E Mx * (t) E Mx (t) E My * ]},
d n M (t) dt = γ s n M (t) γ e { n M (t)(| E Mx (t) | 2 +| E My (t) | 2 )+i N M (t)[ E My (t) E Mx * (t) E Mx (t) E My * (t)]},
U x,y (0,tτ)= ω 0 V S A T L ν c n 1,2 E Mx,My (tτ),
d U x (t,x) dx =id (x) 1 U y (t,x)exp(iΔkx)i d 2 (x) U x (t,x),
d U y (t,x) dx =id (x) 3 U x (t,x)exp(iΔkx)i d 4 (x) U y (t,x),
d 1 = k 0 2 n 1 n 2 r eff1 E 0 f 1 ,
d 2 = k 0 2 n 1 r eff2 E 0 f 0 ,
d 3 = k 0 2 n 1 n 2 r eff1 E 0 f 1 ,
d 4 = k 0 2 n 2 r eff3 E 0 f 0 ,
r eff1 = j,k,l ( ε jj ε kk ) a j r jkl b k c l ,
r eff2 = j,k,l ( ε jj ε kk ) a j r jkl a k c l ,
r eff2 = j,k,l ( ε jj ε kk ) b j r jkl b k c l ,
u x,y (tτ,L)= ρ x,y (tτ,L)exp(i β 0 L)exp[i ϕ x,y (tτ,L)],
ρ x,y (tτ,L)= { u x,y 2 (tτ,0) cos 2 (νL)+ [ γ u x,y (tτ,0) d 1,3 u y,x (tτ,0) ν ] 2 sin 2 (νL) } 1/2 ,
ϕ x,y (tτ,L)= tan 1 [ ±γ u x,y (tτ,0) d 1,3 u y,x (tτ,0) ν u x,y (tτ,0) tan(νL) ],
β 0 = Δk d 2 d 4 2 ,
ν= (Δk+ d 2 d 4 ) 2 +4 d 1 d 3 2 ,
γ= d 4 d 2 Δk 2 .
E Px,Py = S A T L υ C n 1,2 ω 0 V u x,y (tτ,L),
d dt ( E Sx (t) E Sy (t) )=k(1+ia)[ N S (t)1]( E Sx (t) E (t) Sy )±ik(1+ia) n S (t)( E Sy (t) E Sx (t) )( γ a +i γ p )( E Sx (t) E Sy (t) ) +( [ β Sp ( N S (t)+ n S (t))/2 ] 1/2 i [ β sp ( N S (t)+ n S (t))/2] 1/2 ) ξ 1 +( [ β Sp ( N S (t) n S (t))/2 ] 1/2 i [ β sp ( N S (t) n S (t))/2 ] 1/2 ) ξ 2 + k inj [ E Px (tτ) E Py (tτ) ]exp(i ω 0 τ+iΔωt)
d N S (t) dt = γ e { N S (t) μ S + N S (t)(| E Sx (t) | 2 +| E Sy (t) | 2 )+in (t) S [ E Sy (t) E Sx * (t) E Sx (t) E Sy * ]},
d n S (t) dt = γ s n S (t) γ e { n S (t)(| E Sx (t) | 2 +| E Sy (t) | 2 )+i N S (t)[ E Sy (t) E Mx * (t) E Sx (t) E Sy * (t)]},

Metrics