Abstract

The hydrodynamic theory is a powerful tool to study the nonlocal effects in metallic nanostructures that are too small to obey classical electrodynamics while still too large to be handled with a full quantum-mechanical theory. The existing hydrodynamic model can give accurate quantitative predictions for the plasmonic resonance shifts in metallic nanoplasmonics, yet is not able to predict the spectral width which is usually taken as a pre-set value instead. By taking account the fact that due to electron density spill-out from a surface, the Coulomb interaction screening is less efficient close the surface thus leads to a higher electron-electron scattering rate in this paper, we study how the electron-density-related damping rate induced by such Coulomb interaction will affect the plasmonic spectral broadening. We perform the simulation on a Na nanowire, which shows that the absorption spectra width is wider when the size of the nanowire becomes smaller. This result is consistent well with the reported experiment. Therefore, our theoretical model extends the existing hydrodynamic model and can provide much more quantum insight about nonlocal effects in metallic nanostructures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of plasmonic core-shell nanomatryoshkas: a quantum hydrodynamic analysis

Muhammad Khalid, Fabio Della Sala, and Cristian Ciracì
Opt. Express 26(13) 17322-17334 (2018)

Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers

Tatiana V. Teperik, Peter Nordlander, Javier Aizpurua, and Andrei G. Borisov
Opt. Express 21(22) 27306-27325 (2013)

Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas

Mario Zapata, Ángela S. Camacho Beltrán, Andrei G. Borisov, and Javier Aizpurua
Opt. Express 23(6) 8134-8149 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Raimes, Many-Electron Theory (North-Holland, 1972).
  2. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
    [Crossref]
  3. A. Wiener, A. I. Fernández-Domínguez, J. B. Pendry, A. P. Horsfield, and S. A. Maier, “Nonlocal propagation and tunnelling of surface plasmons in metallic hourglass waveguides,” Opt. Express 21(22), 27509–27518 (2013).
    [Crossref] [PubMed]
  4. Q. Huang, F. Bao, and S. He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express 21(2), 1430–1439 (2013).
    [Crossref] [PubMed]
  5. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
    [Crossref] [PubMed]
  6. P. Z. El-Khoury, D. Hu, V. A. Apkarian, and W. P. Hess, “Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges,” Nano Lett. 13(4), 1858–1861 (2013).
    [PubMed]
  7. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref] [PubMed]
  8. J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of Quantum Tunneling between Two Plasmonic Nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
    [Crossref] [PubMed]
  9. J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
    [Crossref] [PubMed]
  10. G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
    [Crossref] [PubMed]
  11. L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures,” J. Phys. Chem. C 117(17), 8941–8949 (2013).
    [Crossref]
  12. K. Zhao, M. C. Troparevsky, D. Xiao, A. G. Eguiluz, and Z. Zhang, “Electronic Coupling and Optimal Gap Size between Two Metal Nanoparticles,” Phys. Rev. Lett. 102(18), 186804 (2009).
    [Crossref] [PubMed]
  13. K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87(23), 235433 (2013).
    [Crossref]
  14. N. A. Mortensen, “Nonlocal formalism for nanoplasmonics: Phenomenological and semi-classical considerations,” Photon. Nanostruct.–Fundam. Appl. 11(4), 303–309 (2013).
    [Crossref]
  15. W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86(20), 205429 (2012).
    [Crossref]
  16. S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
    [Crossref] [PubMed]
  17. V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: Optical Properties of a Nanomatryushka,” Nano Lett. 13(12), 5873–5879 (2013).
    [Crossref] [PubMed]
  18. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
    [Crossref] [PubMed]
  19. L. Serra and A. Rubio, “Core Polarization in the Optical Response of Metal Clusters: Generalized Time-Dependent Density-Functional Theory,” Phys. Rev. Lett. 78(8), 1428–1431 (1997).
    [Crossref]
  20. J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
    [Crossref]
  21. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
    [Crossref] [PubMed]
  22. G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
    [Crossref] [PubMed]
  23. W. Yan, “Hydrodynamic theory for quantum plasmonics: Linear-response dynamics of the inhomogeneous electron gas,” Phys. Rev. B 91(11), 115416 (2015).
    [Crossref]
  24. A. Eguiluz and J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976).
    [Crossref]
  25. G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
    [Crossref]
  26. C. David and F. J. García de Abajo, “Surface Plasmon Dependence on the Electron Density Profile at Metal Surfaces,” ACS Nano 8(9), 9558–9566 (2014).
    [Crossref] [PubMed]
  27. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [Crossref] [PubMed]
  28. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
    [Crossref] [PubMed]
  29. N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
    [Crossref] [PubMed]
  30. L. Liu, Y. Wang, Z. Fang, and K. Zhao, “Plasmon hybridization model generalized to conductively bridged nanoparticle dimers,” J. Chem. Phys. 139(6), 064310 (2013).
    [Crossref] [PubMed]
  31. Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
    [Crossref] [PubMed]
  32. W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
    [Crossref] [PubMed]
  33. X. Li, T. Wang, and C. Dong, “Reduction of Pure Dephasing Rates of Excitons by Population Decay in Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 50(7), 548–553 (2014).
    [Crossref]
  34. C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
    [Crossref] [PubMed]
  35. S. Lundqvist, and N. H. March, Theory of The inhomogeneous Electron Gas (Springer Science + Business Media, 1983).
  36. R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer-Verlag, 1990).

2015 (2)

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

W. Yan, “Hydrodynamic theory for quantum plasmonics: Linear-response dynamics of the inhomogeneous electron gas,” Phys. Rev. B 91(11), 115416 (2015).
[Crossref]

2014 (5)

C. David and F. J. García de Abajo, “Surface Plasmon Dependence on the Electron Density Profile at Metal Surfaces,” ACS Nano 8(9), 9558–9566 (2014).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref] [PubMed]

X. Li, T. Wang, and C. Dong, “Reduction of Pure Dephasing Rates of Excitons by Population Decay in Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 50(7), 548–553 (2014).
[Crossref]

2013 (15)

Q. Huang, F. Bao, and S. He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express 21(2), 1430–1439 (2013).
[Crossref] [PubMed]

A. Wiener, A. I. Fernández-Domínguez, J. B. Pendry, A. P. Horsfield, and S. A. Maier, “Nonlocal propagation and tunnelling of surface plasmons in metallic hourglass waveguides,” Opt. Express 21(22), 27509–27518 (2013).
[Crossref] [PubMed]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

P. Z. El-Khoury, D. Hu, V. A. Apkarian, and W. P. Hess, “Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges,” Nano Lett. 13(4), 1858–1861 (2013).
[PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of Quantum Tunneling between Two Plasmonic Nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: Optical Properties of a Nanomatryushka,” Nano Lett. 13(12), 5873–5879 (2013).
[Crossref] [PubMed]

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures,” J. Phys. Chem. C 117(17), 8941–8949 (2013).
[Crossref]

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87(23), 235433 (2013).
[Crossref]

N. A. Mortensen, “Nonlocal formalism for nanoplasmonics: Phenomenological and semi-classical considerations,” Photon. Nanostruct.–Fundam. Appl. 11(4), 303–309 (2013).
[Crossref]

L. Liu, Y. Wang, Z. Fang, and K. Zhao, “Plasmon hybridization model generalized to conductively bridged nanoparticle dimers,” J. Chem. Phys. 139(6), 064310 (2013).
[Crossref] [PubMed]

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

2012 (5)

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86(20), 205429 (2012).
[Crossref]

G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

2009 (2)

K. Zhao, M. C. Troparevsky, D. Xiao, A. G. Eguiluz, and Z. Zhang, “Electronic Coupling and Optimal Gap Size between Two Metal Nanoparticles,” Phys. Rev. Lett. 102(18), 186804 (2009).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

2000 (1)

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

1998 (1)

J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
[Crossref]

1997 (1)

L. Serra and A. Rubio, “Core Polarization in the Optical Response of Metal Clusters: Generalized Time-Dependent Density-Functional Theory,” Phys. Rev. Lett. 78(8), 1428–1431 (1997).
[Crossref]

1976 (1)

A. Eguiluz and J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976).
[Crossref]

Aizpurua, J.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Andersen, K.

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87(23), 235433 (2013).
[Crossref]

Apkarian, V. A.

P. Z. El-Khoury, D. Hu, V. A. Apkarian, and W. P. Hess, “Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges,” Nano Lett. 13(4), 1858–1861 (2013).
[PubMed]

Bai, P.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

Bao, F.

Baumberg, J. J.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Borisov, A. G.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Bosman, M.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

Broyer, M.

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
[Crossref]

Chen, L. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Christofilos, D.

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Colli, A.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Cottancin, E.

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

Crozier, K. B.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref] [PubMed]

David, C.

C. David and F. J. García de Abajo, “Surface Plasmon Dependence on the Electron Density Profile at Metal Surfaces,” ACS Nano 8(9), 9558–9566 (2014).
[Crossref] [PubMed]

Del Fatti, N.

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of Quantum Tunneling between Two Plasmonic Nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

Dong, C.

X. Li, T. Wang, and C. Dong, “Reduction of Pure Dephasing Rates of Excitons by Population Decay in Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 50(7), 548–553 (2014).
[Crossref]

Dong, Z. C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Eguiluz, A.

A. Eguiluz and J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976).
[Crossref]

Eguiluz, A. G.

K. Zhao, M. C. Troparevsky, D. Xiao, A. G. Eguiluz, and Z. Zhang, “Electronic Coupling and Optimal Gap Size between Two Metal Nanoparticles,” Phys. Rev. Lett. 102(18), 186804 (2009).
[Crossref] [PubMed]

Eiden, A. L.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

El-Khoury, P. Z.

P. Z. El-Khoury, D. Hu, V. A. Apkarian, and W. P. Hess, “Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges,” Nano Lett. 13(4), 1858–1861 (2013).
[PubMed]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Evers, F.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Fang, Z.

L. Liu, Y. Wang, Z. Fang, and K. Zhao, “Plasmon hybridization model generalized to conductively bridged nanoparticle dimers,” J. Chem. Phys. 139(6), 064310 (2013).
[Crossref] [PubMed]

Fernandez-Dominguez, A. I.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

A. Wiener, A. I. Fernández-Domínguez, J. B. Pendry, A. P. Horsfield, and S. A. Maier, “Nonlocal propagation and tunnelling of surface plasmons in metallic hourglass waveguides,” Opt. Express 21(22), 27509–27518 (2013).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Ferrari, A. C.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

García de Abajo, F. J.

C. David and F. J. García de Abajo, “Surface Plasmon Dependence on the Electron Density Profile at Metal Surfaces,” ACS Nano 8(9), 9558–9566 (2014).
[Crossref] [PubMed]

García-Etxarri, A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of Quantum Tunneling between Two Plasmonic Nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

García-González, P.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures,” J. Phys. Chem. C 117(17), 8941–8949 (2013).
[Crossref]

García-Vidal, F. J.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures,” J. Phys. Chem. C 117(17), 8941–8949 (2013).
[Crossref]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

He, S.

Hess, W. P.

P. Z. El-Khoury, D. Hu, V. A. Apkarian, and W. P. Hess, “Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges,” Nano Lett. 13(4), 1858–1861 (2013).
[PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Horsfield, A. P.

Hou, J. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Hu, D.

P. Z. El-Khoury, D. Hu, V. A. Apkarian, and W. P. Hess, “Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges,” Nano Lett. 13(4), 1858–1861 (2013).
[PubMed]

Huang, F.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Huang, Q.

Jauho, A.

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

Jauho, A. P.

Jensen, K. L.

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87(23), 235433 (2013).
[Crossref]

Jeppesen, C.

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

Jiang, S.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Kim, M. S.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Koh, A. L.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of Quantum Tunneling between Two Plasmonic Nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

Kulkarni, V.

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: Optical Properties of a Nanomatryushka,” Nano Lett. 13(12), 5873–5879 (2013).
[Crossref] [PubMed]

Kwiatkowski, A.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Lee, J.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Lermé, J.

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
[Crossref]

Li, X.

X. Li, T. Wang, and C. Dong, “Reduction of Pure Dephasing Rates of Excitons by Population Decay in Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 50(7), 548–553 (2014).
[Crossref]

Liao, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Liu, L.

L. Liu, Y. Wang, Z. Fang, and K. Zhao, “Plasmon hybridization model generalized to conductively bridged nanoparticle dimers,” J. Chem. Phys. 139(6), 064310 (2013).
[Crossref] [PubMed]

Lombardo, A.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Luo, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

Maier, S. A.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

A. Wiener, A. I. Fernández-Domínguez, J. B. Pendry, A. P. Horsfield, and S. A. Maier, “Nonlocal propagation and tunnelling of surface plasmons in metallic hourglass waveguides,” Opt. Express 21(22), 27509–27518 (2013).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

McEnery, K. R.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Mertens, J.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Milana, S.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Mortensen, N. A.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87(23), 235433 (2013).
[Crossref]

N. A. Mortensen, “Nonlocal formalism for nanoplasmonics: Phenomenological and semi-classical considerations,” Photon. Nanostruct.–Fundam. Appl. 11(4), 303–309 (2013).
[Crossref]

W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86(20), 205429 (2012).
[Crossref]

G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Nijhuis, C. A.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

Nordlander, P.

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: Optical Properties of a Nanomatryushka,” Nano Lett. 13(12), 5873–5879 (2013).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

Özdemir, S. K.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Palpant, B.

J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
[Crossref]

Pellarin, M.

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
[Crossref]

Pendry, J. B.

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

A. Wiener, A. I. Fernández-Domínguez, J. B. Pendry, A. P. Horsfield, and S. A. Maier, “Nonlocal propagation and tunnelling of surface plasmons in metallic hourglass waveguides,” Opt. Express 21(22), 27509–27518 (2013).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Perez, A.

J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
[Crossref]

Prével, B.

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
[Crossref]

Prodan, E.

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: Optical Properties of a Nanomatryushka,” Nano Lett. 13(12), 5873–5879 (2013).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

Quinn, J. J.

A. Eguiluz and J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976).
[Crossref]

Raza, S.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Rockstuhl, C.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Rubio, A.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures,” J. Phys. Chem. C 117(17), 8941–8949 (2013).
[Crossref]

L. Serra and A. Rubio, “Core Polarization in the Optical Response of Metal Clusters: Generalized Time-Dependent Density-Functional Theory,” Phys. Rev. Lett. 78(8), 1428–1431 (1997).
[Crossref]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Scholl, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of Quantum Tunneling between Two Plasmonic Nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

Serra, L.

L. Serra and A. Rubio, “Core Polarization in the Optical Response of Metal Clusters: Generalized Time-Dependent Density-Functional Theory,” Phys. Rev. Lett. 78(8), 1428–1431 (1997).
[Crossref]

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Sigle, D. O.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Søndergaard, T.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

Stella, L.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures,” J. Phys. Chem. C 117(17), 8941–8949 (2013).
[Crossref]

Straubel, J.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Sun, Z.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Sundaram, R. S.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Tame, M. S.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Tan, S. F.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

Thygesen, K. S.

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87(23), 235433 (2013).
[Crossref]

Toscano, G.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Treilleux, M.

J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
[Crossref]

Troparevsky, M. C.

K. Zhao, M. C. Troparevsky, D. Xiao, A. G. Eguiluz, and Z. Zhang, “Electronic Coupling and Optimal Gap Size between Two Metal Nanoparticles,” Phys. Rev. Lett. 102(18), 186804 (2009).
[Crossref] [PubMed]

Tserkezis, C.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Vallée, F.

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

Vialle, J. L.

J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
[Crossref]

Voisin, C.

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

Wang, T.

X. Li, T. Wang, and C. Dong, “Reduction of Pure Dephasing Rates of Excitons by Population Decay in Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 50(7), 548–553 (2014).
[Crossref]

Wang, Y.

L. Liu, Y. Wang, Z. Fang, and K. Zhao, “Plasmon hybridization model generalized to conductively bridged nanoparticle dimers,” J. Chem. Phys. 139(6), 064310 (2013).
[Crossref] [PubMed]

Wiener, A.

Wu, L.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

Wubs, M.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86(20), 205429 (2012).
[Crossref]

G. Toscano, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Xiao, D.

K. Zhao, M. C. Troparevsky, D. Xiao, A. G. Eguiluz, and Z. Zhang, “Electronic Coupling and Optimal Gap Size between Two Metal Nanoparticles,” Phys. Rev. Lett. 102(18), 186804 (2009).
[Crossref] [PubMed]

Xiao, S.

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

Xu, H.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Yan, W.

W. Yan, “Hydrodynamic theory for quantum plasmonics: Linear-response dynamics of the inhomogeneous electron gas,” Phys. Rev. B 91(11), 115416 (2015).
[Crossref]

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86(20), 205429 (2012).
[Crossref]

Yang, J. K. W.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

Yang, J. L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zhang, C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, P.

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures,” J. Phys. Chem. C 117(17), 8941–8949 (2013).
[Crossref]

Zhang, R.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zhang, Z.

K. Zhao, M. C. Troparevsky, D. Xiao, A. G. Eguiluz, and Z. Zhang, “Electronic Coupling and Optimal Gap Size between Two Metal Nanoparticles,” Phys. Rev. Lett. 102(18), 186804 (2009).
[Crossref] [PubMed]

Zhao, K.

L. Liu, Y. Wang, Z. Fang, and K. Zhao, “Plasmon hybridization model generalized to conductively bridged nanoparticle dimers,” J. Chem. Phys. 139(6), 064310 (2013).
[Crossref] [PubMed]

K. Zhao, M. C. Troparevsky, D. Xiao, A. G. Eguiluz, and Z. Zhang, “Electronic Coupling and Optimal Gap Size between Two Metal Nanoparticles,” Phys. Rev. Lett. 102(18), 186804 (2009).
[Crossref] [PubMed]

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zhu, W.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref] [PubMed]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

ACS Nano (1)

C. David and F. J. García de Abajo, “Surface Plasmon Dependence on the Electron Density Profile at Metal Surfaces,” ACS Nano 8(9), 9558–9566 (2014).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

X. Li, T. Wang, and C. Dong, “Reduction of Pure Dephasing Rates of Excitons by Population Decay in Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 50(7), 548–553 (2014).
[Crossref]

J. Chem. Phys. (1)

L. Liu, Y. Wang, Z. Fang, and K. Zhao, “Plasmon hybridization model generalized to conductively bridged nanoparticle dimers,” J. Chem. Phys. 139(6), 064310 (2013).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures,” J. Phys. Chem. C 117(17), 8941–8949 (2013).
[Crossref]

Nano Lett. (5)

V. Kulkarni, E. Prodan, and P. Nordlander, “Quantum Plasmonics: Optical Properties of a Nanomatryushka,” Nano Lett. 13(12), 5873–5879 (2013).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

P. Z. El-Khoury, D. Hu, V. A. Apkarian, and W. P. Hess, “Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges,” Nano Lett. 13(4), 1858–1861 (2013).
[PubMed]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of Quantum Tunneling between Two Plasmonic Nanoparticles,” Nano Lett. 13(2), 564–569 (2013).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics 2(3), 161–166 (2013).
[Crossref]

Nat. Commun. (5)

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref] [PubMed]

Nat. Phys. (1)

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Nature (2)

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Photon. Nanostruct.–Fundam. Appl. (1)

N. A. Mortensen, “Nonlocal formalism for nanoplasmonics: Phenomenological and semi-classical considerations,” Photon. Nanostruct.–Fundam. Appl. 11(4), 303–309 (2013).
[Crossref]

Phys. Rev. B (4)

W. Yan, M. Wubs, and N. A. Mortensen, “Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86(20), 205429 (2012).
[Crossref]

W. Yan, “Hydrodynamic theory for quantum plasmonics: Linear-response dynamics of the inhomogeneous electron gas,” Phys. Rev. B 91(11), 115416 (2015).
[Crossref]

A. Eguiluz and J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976).
[Crossref]

K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B 87(23), 235433 (2013).
[Crossref]

Phys. Rev. Lett. (5)

Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface Plasmons and Nonlocality: A Simple Model,” Phys. Rev. Lett. 111(9), 093901 (2013).
[Crossref] [PubMed]

K. Zhao, M. C. Troparevsky, D. Xiao, A. G. Eguiluz, and Z. Zhang, “Electronic Coupling and Optimal Gap Size between Two Metal Nanoparticles,” Phys. Rev. Lett. 102(18), 186804 (2009).
[Crossref] [PubMed]

L. Serra and A. Rubio, “Core Polarization in the Optical Response of Metal Clusters: Generalized Time-Dependent Density-Functional Theory,” Phys. Rev. Lett. 78(8), 1428–1431 (1997).
[Crossref]

J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the Size Effects in Free and Matrix-Embedded Silver Clusters,” Phys. Rev. Lett. 80(23), 5105–5108 (1998).
[Crossref]

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-Dependent Electron-Electron Interactions in Metal Nanoparticles,” Phys. Rev. Lett. 85(10), 2200–2203 (2000).
[Crossref] [PubMed]

Science (2)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

Other (3)

S. Lundqvist, and N. H. March, Theory of The inhomogeneous Electron Gas (Springer Science + Business Media, 1983).

R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer-Verlag, 1990).

S. Raimes, Many-Electron Theory (North-Holland, 1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the metal nanowire (left) and its sectional view (right). The radius of the nanowire (metal layer) is R, and the electron spill-out-layer is R im.
Fig. 2
Fig. 2 The equilibrium electron density for n 0/n ion when R = 2nm. (a) λω = 1/9; (b) λω = 1/4; (c) λω = 1/2; (d) λω = λmix with λin = 1/9 and λout = 1/2.
Fig. 3
Fig. 3 Absorption spectra for a Na nanowire with radius R = 2 nm and γ = 0.17 eV when λω = 1/9, λω = 1/4, λω = 1/2 and λω = λmix, respectively.
Fig. 4
Fig. 4 Size dependence of the spectral width for a Na nanowire with λω = λmix. Solid line indicates γ = γ n; and dotted line for γ = γ c.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H [ n ( r , t ) , p ( r , t ) ] = G [ n ( r , t ) ] + ( p ( r , t ) e A ( r , t ) ) 2 2 m n ( r , t ) d r + e ϕ ( r , t ) n ( r , t ) d r + e [ e 2 d r n ( r , t ) 4 π ε 0 | r r | V i o n ( r ) ] n ( r , t ) d r ,
G = 3 10 2 m ( 3 π 2 ) 2 / 3 n 5 / 3 ( r , t ) d r + λ ω 8 2 m | n ( r , t ) | 2 n ( r , t ) d r 0.0588 e 2 ε 0 n 4 / 3 ( r , t ) d r - e 2 ε 0 0.035 0.6024 + 7.8 a H n 1 / 3 n 4 / 3 ( r , t ) d r ,
2 ( δ G δ n ) 0 e 2 ε 0 n 0 + e 2 ε 0 n i o n = 0.
× × E 1 ω 2 c 2 E 1 = μ 0 i ω J 1
J 1 = 1 γ i ω [ e n 0 m ( δ G δ n ) 1 + ε 0 E 1 ω p 2 + ω p 2 i ω J 1 ε r ( ω ) ] ,
γ [ n ( r ) , ε d ( r ) ] n ( r ) 5 / 6 ε d ( r ) 1 / 2 ,
λ ω = λ m i x = { λ i n 1 / 9 , i nside of the metal, λ o u t 1 / 2 , o u t s i d e o f t h e m e t a l .
γ p = f [ n ( r ) ] γ [ n ( r ) ] d r ,

Metrics