Abstract

The fabrication and characteristics of Ce/Cr-doped crystal fibers employing drawing tower technique are reported. The fluorescence spectrum of the Ce/Cr fibers at the core diameter ranging from 10 to 21 µm exhibited a 200-nm near-Gaussian broadband emission which enabled to provide an axial resolution of 1.8-μm and a power density of 79.1 nW/nm. The proposed broadband Ce/Cr-doped crystal fibers may be provided as a high-resolution light source for the use in optical coherence tomography system as well as industrial inspection and biomedical imaging applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower

Yi-Chung Huang, Chun-Nien Liu, Yen-Sheng Lin, Jau-Sheng Wang, Wei-Lun Wang, Fang-Yen Lo, Ta-Lung Chou, Sheng-Lung Huang, and Wood-Hi Cheng
Opt. Express 21(4) 4790-4795 (2013)

Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers

Yi-Chung Huang, Jau-Sheng Wang, Yu-Kuan Lu, Wen-Kuei Liu, Kuang-Yao Huang, Sheng-Lung Huang, and Wood-Hi Cheng
Opt. Express 15(22) 14382-14388 (2007)

Broadband emission from Cr-doped fibers fabricated by drawing tower

Yi-Chung Huang, Yu-Kuan Lu, Jian-Cheng Chen, Yi-Cheng Hsu, Yu-Ming Huang, Sheng-Lung Huang, and Wood-Hi Cheng
Opt. Express 14(19) 8492-8497 (2006)

References

  • View by:
  • |
  • |
  • |

  1. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [Crossref] [PubMed]
  2. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
    [Crossref] [PubMed]
  3. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30(14), 1803–1805 (2005).
    [Crossref] [PubMed]
  4. A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28(20), 1921–1923 (2003).
    [Crossref] [PubMed]
  5. N. C. Cheng, T. H. Hsieh, Y. T. Wang, C. C. Lai, C. K. Chang, M. Y. Lin, D. W. Huang, J. W. Tjiu, and S. L. Huang, “Cell death detection by quantitative three-dimensional single-cell tomography,” Biomed. Opt. Express 3(9), 2111–2120 (2012).
    [Crossref] [PubMed]
  6. C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
    [Crossref]
  7. Y. C. Huang, C. N. Liu, Y. S. Lin, J. S. Wang, W. L. Wang, F. Y. Lo, T. L. Chou, S. L. Huang, and W. H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Express 21(4), 4790–4795 (2013).
    [Crossref] [PubMed]
  8. Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
    [Crossref]
  9. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
    [Crossref] [PubMed]
  10. A. Tomasi, P. Scardi, F. Branda, and A. Costantini, “Structure and thermal evolution of glasses obtained from porphiric sands, MgO (15%) and TiO2 (0-16%),” J. Mater. Sci. Lett. 12(18), 1416–1419 (1993).
    [Crossref]
  11. H. H. Lee, M. Kon, and K. Asaoka, “Mechanical properties of porcelain containing leucite ion-exchanged with rubidium,” Dent. Mater. J. 17(2), 93–103 (1998).
    [Crossref]
  12. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
    [Crossref] [PubMed]
  13. M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch. Dermatol. Res. 305(4), 283–297 (2013).
    [Crossref] [PubMed]
  14. H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
    [Crossref] [PubMed]
  15. Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
    [Crossref] [PubMed]
  16. S. Bourquin, P. Seitz, and R. P. Salathé, “Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett. 26(8), 512–514 (2001).
    [Crossref] [PubMed]

2014 (1)

C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
[Crossref]

2013 (3)

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch. Dermatol. Res. 305(4), 283–297 (2013).
[Crossref] [PubMed]

Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Y. C. Huang, C. N. Liu, Y. S. Lin, J. S. Wang, W. L. Wang, F. Y. Lo, T. L. Chou, S. L. Huang, and W. H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Express 21(4), 4790–4795 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (1)

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

2009 (2)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

2008 (1)

2005 (1)

2003 (1)

2002 (1)

2001 (1)

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

1998 (1)

H. H. Lee, M. Kon, and K. Asaoka, “Mechanical properties of porcelain containing leucite ion-exchanged with rubidium,” Dent. Mater. J. 17(2), 93–103 (1998).
[Crossref]

1993 (1)

A. Tomasi, P. Scardi, F. Branda, and A. Costantini, “Structure and thermal evolution of glasses obtained from porphiric sands, MgO (15%) and TiO2 (0-16%),” J. Mater. Sci. Lett. 12(18), 1416–1419 (1993).
[Crossref]

Akcay, A. C.

Apolonski, A.

Asaoka, K.

H. H. Lee, M. Kon, and K. Asaoka, “Mechanical properties of porcelain containing leucite ion-exchanged with rubidium,” Dent. Mater. J. 17(2), 93–103 (1998).
[Crossref]

Bezerra, H. G.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Bizheva, K.

Boone, M.

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch. Dermatol. Res. 305(4), 283–297 (2013).
[Crossref] [PubMed]

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Bourquin, S.

Branda, F.

A. Tomasi, P. Scardi, F. Branda, and A. Costantini, “Structure and thermal evolution of glasses obtained from porphiric sands, MgO (15%) and TiO2 (0-16%),” J. Mater. Sci. Lett. 12(18), 1416–1419 (1993).
[Crossref]

Brenner, M.

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Cable, A.

Chang, C. K.

Chen, Y.

Chen, Z.

Cheng, N. C.

Cheng, W. H.

C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
[Crossref]

Y. C. Huang, C. N. Liu, Y. S. Lin, J. S. Wang, W. L. Wang, F. Y. Lo, T. L. Chou, S. L. Huang, and W. H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Express 21(4), 4790–4795 (2013).
[Crossref] [PubMed]

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

Chou, T. L.

Chuang, C. C.

Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Costa, M. A.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Costantini, A.

A. Tomasi, P. Scardi, F. Branda, and A. Costantini, “Structure and thermal evolution of glasses obtained from porphiric sands, MgO (15%) and TiO2 (0-16%),” J. Mater. Sci. Lett. 12(18), 1416–1419 (1993).
[Crossref]

Del Marmol, V.

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch. Dermatol. Res. 305(4), 283–297 (2013).
[Crossref] [PubMed]

Drexler, W.

Eichenholz, J. M.

Fercher, A. F.

Fujimoto, J. G.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Gorczynska, I.

Guagliumi, G.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Guo, S.

Hermann, B.

Ho, Y. C.

Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Hsieh, T. H.

Hsieh, Y. S.

Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Huang, D. W.

Huang, P. L.

C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
[Crossref]

Huang, S. L.

C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
[Crossref]

Y. C. Huang, C. N. Liu, Y. S. Lin, J. S. Wang, W. L. Wang, F. Y. Lo, T. L. Chou, S. L. Huang, and W. H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Express 21(4), 4790–4795 (2013).
[Crossref] [PubMed]

N. C. Cheng, T. H. Hsieh, Y. T. Wang, C. C. Lai, C. K. Chang, M. Y. Lin, D. W. Huang, J. W. Tjiu, and S. L. Huang, “Cell death detection by quantitative three-dimensional single-cell tomography,” Biomed. Opt. Express 3(9), 2111–2120 (2012).
[Crossref] [PubMed]

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

Huang, Y. C.

C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
[Crossref]

Y. C. Huang, C. N. Liu, Y. S. Lin, J. S. Wang, W. L. Wang, F. Y. Lo, T. L. Chou, S. L. Huang, and W. H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Express 21(4), 4790–4795 (2013).
[Crossref] [PubMed]

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

Jemec, G.

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch. Dermatol. Res. 305(4), 283–297 (2013).
[Crossref] [PubMed]

Jiang, J.

Knight, J. C.

Kon, M.

H. H. Lee, M. Kon, and K. Asaoka, “Mechanical properties of porcelain containing leucite ion-exchanged with rubidium,” Dent. Mater. J. 17(2), 93–103 (1998).
[Crossref]

Kuo, H. H.

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

Lai, C. C.

Lee, H. H.

H. H. Lee, M. Kon, and K. Asaoka, “Mechanical properties of porcelain containing leucite ion-exchanged with rubidium,” Dent. Mater. J. 17(2), 93–103 (1998).
[Crossref]

Lee, S. Y.

Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Lin, K. F.

Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Lin, M. Y.

Lin, T. C.

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

Lin, Y. S.

C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
[Crossref]

Y. C. Huang, C. N. Liu, Y. S. Lin, J. S. Wang, W. L. Wang, F. Y. Lo, T. L. Chou, S. L. Huang, and W. H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Express 21(4), 4790–4795 (2013).
[Crossref] [PubMed]

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

Liu, C. N.

C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
[Crossref]

Y. C. Huang, C. N. Liu, Y. S. Lin, J. S. Wang, W. L. Wang, F. Y. Lo, T. L. Chou, S. L. Huang, and W. H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Express 21(4), 4790–4795 (2013).
[Crossref] [PubMed]

Lo, F. Y.

Lu, Y. K.

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Mukai, D.

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Norrenberg, S.

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch. Dermatol. Res. 305(4), 283–297 (2013).
[Crossref] [PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Potsaid, B.

Povazay, B.

Rolland, J. P.

Rollins, A. M.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Russell, P. St. J.

Salathé, R. P.

Sattmann, H.

Scardi, P.

A. Tomasi, P. Scardi, F. Branda, and A. Costantini, “Structure and thermal evolution of glasses obtained from porphiric sands, MgO (15%) and TiO2 (0-16%),” J. Mater. Sci. Lett. 12(18), 1416–1419 (1993).
[Crossref]

Scherzer, E.

Seitz, P.

Shih, T. T.

C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
[Crossref]

Simon, D. I.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Srinivasan, V. J.

Sun, C. W.

Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Tjiu, J. W.

Tomasi, A.

A. Tomasi, P. Scardi, F. Branda, and A. Costantini, “Structure and thermal evolution of glasses obtained from porphiric sands, MgO (15%) and TiO2 (0-16%),” J. Mater. Sci. Lett. 12(18), 1416–1419 (1993).
[Crossref]

Tsai, J. C.

Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wang, J. S.

Y. C. Huang, C. N. Liu, Y. S. Lin, J. S. Wang, W. L. Wang, F. Y. Lo, T. L. Chou, S. L. Huang, and W. H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Express 21(4), 4790–4795 (2013).
[Crossref] [PubMed]

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

Wang, S. Y.

C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
[Crossref]

Wang, W. L.

Y. C. Huang, C. N. Liu, Y. S. Lin, J. S. Wang, W. L. Wang, F. Y. Lo, T. L. Chou, S. L. Huang, and W. H. Cheng, “Fluorescence enhancement in broadband Cr-doped fibers fabricated by drawing tower,” Opt. Express 21(4), 4790–4795 (2013).
[Crossref] [PubMed]

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

Wang, Y. T.

Xie, T.

Yeh, S. M.

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

Arch. Dermatol. Res. (1)

M. Boone, S. Norrenberg, G. Jemec, and V. Del Marmol, “High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study,” Arch. Dermatol. Res. 305(4), 283–297 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Dent. Mater. J. (1)

H. H. Lee, M. Kon, and K. Asaoka, “Mechanical properties of porcelain containing leucite ion-exchanged with rubidium,” Dent. Mater. J. 17(2), 93–103 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. N. Liu, Y. C. Huang, Y. S. Lin, S. Y. Wang, P. L. Huang, T. T. Shih, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Ce-doped fiber for high resolution OCT source,” IEEE Photonics Technol. Lett. 26(15), 1499–1502 (2014).
[Crossref]

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photonics Technol. Lett. 22(12), 914–916 (2010).
[Crossref]

J. Mater. Sci. Lett. (1)

A. Tomasi, P. Scardi, F. Branda, and A. Costantini, “Structure and thermal evolution of glasses obtained from porphiric sands, MgO (15%) and TiO2 (0-16%),” J. Mater. Sci. Lett. 12(18), 1416–1419 (1993).
[Crossref]

JACC Cardiovasc. Interv. (1)

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Sensors (Basel) (1)

Y. S. Hsieh, Y. C. Ho, S. Y. Lee, C. C. Chuang, J. C. Tsai, K. F. Lin, and C. W. Sun, “Dental optical coherence tomography,” Sensors (Basel) 13(7), 8928–8949 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a powder/silica preform after fiber-drawing.
Fig. 2
Fig. 2 Cleaved end-face of fiber (a) Ce:Mg2SiO4, (b) Ce:KAlSi2O6, and (c) Cr:Mg2SiO4.
Fig. 3
Fig. 3 XRD patterns of (a) Ce:Mg2SiO4, (b) Ce:KAlSi2O6, (c) Cr:Mg2SiO4.
Fig. 4
Fig. 4 Fluorescent spectrum of Ce:Mg2SiO4, Ce:KAlSi2O6, and Cr:Mg2SiO4 fiber.
Fig. 5
Fig. 5 Schematic optical setup of fiber-based OCT system. PS, power supply ; L1, 10x aspherical lens; SP, splicer; FC, fiber collimator ; P, 150μm pinhole; L2 and L3, 20x objective lenses; M, mirror; LS, linear stage ; PTS, precision translation stage; PD, photodiode; OSC, oscilloscope; PC, personal computer.
Fig. 6
Fig. 6 The coherence function of fiber (a) Ce:Mg2SiO4, (b) Ce:KAlSi2O6, and (c) Cr:Mg2SiO4.

Tables (1)

Tables Icon

Table 1 The applications of Ce/Cr-doped fiber for OCT system [12–16].

Metrics