Abstract

We propose and numerically investigate annular-cladding erbium doped multicore fibers (AC-EDMCF) with either solid or air hole inner cladding to enhance the pump power efficiency in optical amplifiers for spatial division multiplexing (SDM) transmission links. We first propose an all-glass fiber in which a central inner cladding region with a depressed refractive index is introduced to confine the pump inside a ring-shaped region overlapping the multiple signal cores. Through numerical simulations, we determine signal core and annular pump cladding parameters respecting fabrication constraints. We also propose and examine a multi-spot injection scheme for launching the pump in the annular cladding. With this all-glass fiber with annular cladding, our results predict 10 dB increase in gain and 21% pump power savings compared to the standard double cladding design. We also investigate a fiber with an air hole inner cladding to further enhance the pump power confinement and minimize power leaking into the inner cladding. The results are compared to the all-glass AC-EDMCF.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of an erbium-doped fiber with annular doping for low gain compression in cladding-pumped amplifiers

C. Matte-Breton, H. Chen, N. K. Fontaine, R. Ryf, R.-J. Essiambre, C. Kelly, C. Jin, Y. Messaddeq, and Sophie LaRochelle
Opt. Express 26(20) 26633-26645 (2018)

Cladding-pumped erbium-doped multicore fiber amplifier

K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V.R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, and F.V. Dimarcello
Opt. Express 20(18) 20191-20200 (2012)

32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system

Saurabh Jain, Carlos Castro, Yongmin Jung, John Hayes, Reza Sandoghchi, Takayuki Mizuno, Yusuke Sasaki, Yoshimichi Amma, Yutaka Miyamoto, Marc Bohn, Klaus Pulverer, Md. Nooruzzaman, Toshio Morioka, Shaiful Alam, and David J. Richardson
Opt. Express 25(26) 32887-32896 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
    [Crossref]
  2. P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8(5), 345–348 (2014).
    [Crossref]
  3. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  4. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
    [Crossref]
  5. P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photonics Technol. Lett. 23(13), 851–853 (2011).
    [Crossref]
  6. P. M. Krummrich and S. Akhtari, “Selection of energy optimized pump concepts for multi core and multi mode erbium doped fiber amplifiers,” Opt. Express 22(24), 30267–30280 (2014).
    [Crossref] [PubMed]
  7. R. Ryf, N. K. Fontaine, H. Chen, B. Guan, B. Huang, M. Esmaeelpour, A. H. Gnauck, S. Randel, S. J. B. Yoo, A. M. Koonen, R. Shubochkin, Y. Sun, and R. Lingle., “Mode-multiplexed transmission over conventional graded-index multimode fibers,” Opt. Express 23(1), 235–246 (2015).
    [Crossref] [PubMed]
  8. N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20(3), 2668–2680 (2012).
    [Crossref] [PubMed]
  9. J. Sakaguchi, B. J. Puttnam, W. Klaus, J.-M. Delgado-Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (OFC), paper OW1I.3. (2013).
  10. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Optical Fiber Communication Conference (OFC, 2014), paper Th5B.2.
    [Crossref]
  11. R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
    [Crossref]
  12. N. K. Fontaine, T. Haramaty, R. Ryf, H. Chen, L. Miron, L. Pascar, M. Blau, B. Frenkel, L. Wang, Y. Messaddeq, S. LaRochelle, R.-J. Essiambre, Y. Jung, Q. Kang, J. K. Sahu, S.-U. Alam, D. J. Richardson, and D. M. Marom, “Heterogeneous space-division multiplexing and joint wavelength switching demonstration,” in Optical Fiber Communication Conference (OFC, 2015), paper Th5C.5.
    [Crossref]
  13. P. M. Krummrich, “Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing,” Opt. Express 19(17), 16636–16652 (2011).
    [Crossref] [PubMed]
  14. P. Krummrich and S. Akhtari, “Optical amplifiers for cost and energy efficient spatial division multiplexing,” in Frontiers in Optics 2013 (FIO, 2013), paper FM4B.1.
  15. K. S. Abedin, J. M. Fini, T. F. Thierry, V. R. Supradeepa, B. Zhu, M. F. Yan, L. Bansal, E. M. Monberg, and D. J. DiGiovanni, “Multicore erbium doped fiber amplifiers for space division multiplexing systems,” J. Lightwave Technol. 32(16), 2800–2808 (2014).
    [Crossref]
  16. H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express 20(9), 10100–10105 (2012).
    [Crossref] [PubMed]
  17. K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V. R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, and F. V. Dimarcello, “Cladding-pumped erbium-doped multicore fiber amplifier,” Opt. Express 20(18), 20191–20200 (2012).
    [Crossref] [PubMed]
  18. S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
    [Crossref] [PubMed]
  19. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [Crossref] [PubMed]
  20. H. Chen, N. K. Fontaine, R. Ryf, R.-J. Essiambre, L. Wang, Y. Messaddeq, S. LaRochelle, T. Hayashi, T. Nagashima, and T. Sasaki, “Transmission over coupled six-core fiber with two in-line cladding-pumped six-core EDFAs,” in European Conference on Optical Communication (ECOC, 2015), paper We.1.4.2.
  21. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, 1st ed. (Academic Press, 1999).
  22. L. Gagné-Godbout, Modélisation, fabrication et caractérisation d’un amplificateur à fibre optique à sept coeurs dopés à l’erbium (Université Laval, 2014).
  23. C. Jin, B. Ung, Y. Messaddeq, and S. LaRochelle, “Annular Cladding Erbium-Doped Multi-Core Fiber for SDM Amplification,” in Conference on Lasers and Electro-Optics (CLEO, 2015), paper JW2A.95.
    [Crossref]
  24. H. Uemura, K. Takenaga, T. Ori, and S. Matsuo, “Fused taper type fan-in/fan-out device for multicore EDF,” in Opto Electronics and Communications Conference (OECC, 2013), paper TuS1_4.
  25. P. Mitchell, G. Brown, R. R. Thomson, N. Psaila, and A. Kar, “57 channel (19×3) spatial multiplexer fabricated using direct laser inscription,” in Optical Fiber Communication Conference (OFC, 2014), paper M3K.5.
    [Crossref]
  26. D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31(25), 2204–2205 (1995).
    [Crossref]
  27. T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, and D. Kracht, “Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers,” Opt. Express 20(27), 28125–28141 (2012).
    [Crossref] [PubMed]
  28. K. S. Abedin, J. M. Fini, T. F. Thierry, B. Zhu, M. F. Yan, L. Bansal, F. V. Dimarcello, E. M. Monberg, and D. J. DiGiovanni, “Seven-core erbium-doped double-clad fiber amplifier pumped simultaneously by side-coupled multimode fiber,” Opt. Lett. 39(4), 993–996 (2014).
    [Crossref] [PubMed]
  29. C. Jin, B. Huang, K. Shang, H. Chen, R. Ryf, R. J. Essiambre, N. K. Fontaine, G. Li, L. Wang, Y. Messaddeq, and S. Larochelle, “Efficient Annular Cladding Amplifier with Six, Three-Mode Cores,” in European Conference on Optical Communication (ECOC, 2015), paper PDP2.1.

2015 (1)

2014 (6)

2013 (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (5)

2011 (3)

2010 (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

1995 (1)

D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31(25), 2204–2205 (1995).
[Crossref]

Abe, Y.

Abedin, K. S.

Akamatsu, T.

Akhtari, S.

Awaji, Y.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J.-M. Delgado-Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (OFC), paper OW1I.3. (2013).

Bai, N.

Bansal, L.

Bickham, S.

Chen, H.

Correa, R. A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

de Waardt, H.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Delgado-Mendinueta, J.-M.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J.-M. Delgado-Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (OFC), paper OW1I.3. (2013).

DiGiovanni, D. J.

Dimarcello, F. V.

Esmaeelpour, M.

Fini, J. M.

Fishteyn, M.

Fontaine, N. K.

Gnauck, A. H.

Goldberg, L.

D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31(25), 2204–2205 (1995).
[Crossref]

Guan, B.

Hayashi, T.

Huang, B.

Huang, Y.-K.

Huijskens, F. M.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ip, E.

Ishida, I.

Kanno, A.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J.-M. Delgado-Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (OFC), paper OW1I.3. (2013).

Kawanishi, T.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J.-M. Delgado-Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (OFC), paper OW1I.3. (2013).

Klaus, W.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J.-M. Delgado-Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (OFC), paper OW1I.3. (2013).

Kobayashi, T.

Koonen, A. M.

Koonen, A. M. J.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Kosihba, M.

Kracht, D.

Krummrich, P. M.

Kubota, H.

Lau, A. P. T.

Li, G.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20(3), 2668–2680 (2012).
[Crossref] [PubMed]

Li, M.-J.

Liñares, J.

Lingle, R.

Lopez, E. A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Lu, C.

Luo, Y.

Man Chung, K.

Masuda, H.

Mateo, E.

Matsuo, S.

Miaymoto, Y.

Monberg, E. M.

Montero, C.

Moreno, V.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Neumann, J.

Okonkwo, C. M.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Okuyama, K.

Ono, H.

Overmeyer, L.

Peng, G.-D.

Prieto, X.

Puttnam, B. J.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J.-M. Delgado-Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (OFC), paper OW1I.3. (2013).

Randel, S.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ripin, D. J.

D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31(25), 2204–2205 (1995).
[Crossref]

Ryf, R.

Saitoh, K.

Sakaguchi, J.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J.-M. Delgado-Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (OFC), paper OW1I.3. (2013).

Sasaki, T.

Sasaki, Y.

Sasaoka, E.

Sayinc, H.

Schülzgen, A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Shibahara, K.

Shimakawa, O.

Shubochkin, R.

Sun, Y.

Supradeepa, V. R.

Takara, H.

Takenaga, K.

Tam, H.-Y.

Taru, T.

Taunay, T. F.

Ten, S.

Theeg, T.

Thierry, T. F.

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

Tse, V.

van Uden, R. G. H.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Wada, N.

J. Sakaguchi, B. J. Puttnam, W. Klaus, J.-M. Delgado-Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (OFC), paper OW1I.3. (2013).

Wang, T.

Winzer, P. J.

P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8(5), 345–348 (2014).
[Crossref]

P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photonics Technol. Lett. 23(13), 851–853 (2011).
[Crossref]

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Yaman, F.

Yan, M. F.

Yoo, S. J. B.

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Zhu, B.

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Bell Labs Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

Electron. Lett. (1)

D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31(25), 2204–2205 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photonics Technol. Lett. 23(13), 851–853 (2011).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (3)

P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8(5), 345–348 (2014).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Opt. Express (9)

P. M. Krummrich and S. Akhtari, “Selection of energy optimized pump concepts for multi core and multi mode erbium doped fiber amplifiers,” Opt. Express 22(24), 30267–30280 (2014).
[Crossref] [PubMed]

R. Ryf, N. K. Fontaine, H. Chen, B. Guan, B. Huang, M. Esmaeelpour, A. H. Gnauck, S. Randel, S. J. B. Yoo, A. M. Koonen, R. Shubochkin, Y. Sun, and R. Lingle., “Mode-multiplexed transmission over conventional graded-index multimode fibers,” Opt. Express 23(1), 235–246 (2015).
[Crossref] [PubMed]

N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express 20(3), 2668–2680 (2012).
[Crossref] [PubMed]

H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express 20(9), 10100–10105 (2012).
[Crossref] [PubMed]

K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V. R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, and F. V. Dimarcello, “Cladding-pumped erbium-doped multicore fiber amplifier,” Opt. Express 20(18), 20191–20200 (2012).
[Crossref] [PubMed]

S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
[Crossref] [PubMed]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
[Crossref] [PubMed]

T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, and D. Kracht, “Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers,” Opt. Express 20(27), 28125–28141 (2012).
[Crossref] [PubMed]

P. M. Krummrich, “Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing,” Opt. Express 19(17), 16636–16652 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (11)

C. Jin, B. Huang, K. Shang, H. Chen, R. Ryf, R. J. Essiambre, N. K. Fontaine, G. Li, L. Wang, Y. Messaddeq, and S. Larochelle, “Efficient Annular Cladding Amplifier with Six, Three-Mode Cores,” in European Conference on Optical Communication (ECOC, 2015), paper PDP2.1.

P. Krummrich and S. Akhtari, “Optical amplifiers for cost and energy efficient spatial division multiplexing,” in Frontiers in Optics 2013 (FIO, 2013), paper FM4B.1.

H. Chen, N. K. Fontaine, R. Ryf, R.-J. Essiambre, L. Wang, Y. Messaddeq, S. LaRochelle, T. Hayashi, T. Nagashima, and T. Sasaki, “Transmission over coupled six-core fiber with two in-line cladding-pumped six-core EDFAs,” in European Conference on Optical Communication (ECOC, 2015), paper We.1.4.2.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, 1st ed. (Academic Press, 1999).

L. Gagné-Godbout, Modélisation, fabrication et caractérisation d’un amplificateur à fibre optique à sept coeurs dopés à l’erbium (Université Laval, 2014).

C. Jin, B. Ung, Y. Messaddeq, and S. LaRochelle, “Annular Cladding Erbium-Doped Multi-Core Fiber for SDM Amplification,” in Conference on Lasers and Electro-Optics (CLEO, 2015), paper JW2A.95.
[Crossref]

H. Uemura, K. Takenaga, T. Ori, and S. Matsuo, “Fused taper type fan-in/fan-out device for multicore EDF,” in Opto Electronics and Communications Conference (OECC, 2013), paper TuS1_4.

P. Mitchell, G. Brown, R. R. Thomson, N. Psaila, and A. Kar, “57 channel (19×3) spatial multiplexer fabricated using direct laser inscription,” in Optical Fiber Communication Conference (OFC, 2014), paper M3K.5.
[Crossref]

J. Sakaguchi, B. J. Puttnam, W. Klaus, J.-M. Delgado-Mendinueta, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Large-capacity transmission over a 19-core fiber,” in Optical Fiber Communication Conference (OFC), paper OW1I.3. (2013).

T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Optical Fiber Communication Conference (OFC, 2014), paper Th5B.2.
[Crossref]

N. K. Fontaine, T. Haramaty, R. Ryf, H. Chen, L. Miron, L. Pascar, M. Blau, B. Frenkel, L. Wang, Y. Messaddeq, S. LaRochelle, R.-J. Essiambre, Y. Jung, Q. Kang, J. K. Sahu, S.-U. Alam, D. J. Richardson, and D. M. Marom, “Heterogeneous space-division multiplexing and joint wavelength switching demonstration,” in Optical Fiber Communication Conference (OFC, 2015), paper Th5C.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Transverse cross-section of AC-EDMCF showing: the annular pump cladding (dark gray), doped cores (blue), depressed inner cladding (gray), and outer cladding (light gray).
Fig. 2
Fig. 2 Refractive index profile (taken along the A line of Fig. 1.) of a multicore erbium doped fiber with a) annular pump cladding with solid inner cladding, b) annular pump cladding with air-hole inner cladding, c) standard double cladding, and d) single cladding.
Fig. 3
Fig. 3 (a) Signal gain and (b) NF as a function of core radius (rcore), and numerical aperture (NA) for a 1 W pump. Solid square and cross represent respectively parameter sets (rcore = 2.5 μm, NA = 0.15) and (rcore = 4.5 μm, NA = 0.11).
Fig. 4
Fig. 4 Relative effective index difference (Feff) as function of dring,in and dring,out for (a) a solid inner cladding and (b) an air hole inner cladding. The white solid line corresponds to Feff = 1%. Star, diamond and circle represent dring,in = dring,out = 10.5 μm, 6.5 μm and 1.5 μm, respectively. Insets show the signal mode field profile corresponding to small and large values of Feff.
Fig. 5
Fig. 5 Normalized intensity distributions (along x-axis, from view A in Fig. 1) of the first 500 modes for (a) solid and (b) air hole inner claddings.
Fig. 6
Fig. 6 Signal gain (a) and NF (b) against input pump power from 0.5 to 1.5 W. Star and diamond markers correspond to the two pump ring parameter sets found in Fig. 4, solid markers are for AC-EDMCF and open ones for DC-EDMCF.
Fig. 7
Fig. 7 Signal gain against input signal power from −50 to 10 dBm. Star and diamond represent the two pump ring parameter size sets in Fig. 4. Solid markers are for AC-EDMCF and open ones for DC-EDMCF.
Fig. 8
Fig. 8 PCEclad against pump power for AC-EDMCF and DC-EDMCF.
Fig. 9
Fig. 9 Pump (980 nm) injection by imaging multiple spots with flat-top intensity profiles on the AC-EDMCF showing (a) a single spot, (b) three spots and (c) six spots. White dashed circles represents the limits of the annular pump cladding, while the six white dotted circles indicate the positions of the signal core.
Fig. 10
Fig. 10 Normalized length averaged intensity distributions after 10, 20, and 30 mm propagation through the annular cladding with (a) single spot, (b) three spots and (c) six spots injection scheme. White dashed circle represents the limits of the annular pump cladding and the six black dotted circles indicate the position of the signal cores.
Fig. 11
Fig. 11 Zoom-in of the normalized average intensity distributions with six-spot injection after 40 mm propagation through the annular cladding for (a) ACS-EDMCF (solid inner cladding) and (b) ACA-EDMCF (air hole inner cladding).

Tables (3)

Tables Icon

Table 1 Fiber parameters

Tables Icon

Table 2 Simulation parameters

Tables Icon

Table 3 AC-EDMCF parameters

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P d = S p × A clad = η( hν A 21 / σ 13 ) 1η A clad
d P p ( z ) dz = N 1 σ a,p N core A core A ring P p ( z )
d P s ( z ) dz =( N 2 σ e,s N 1 σ a,s ) Γ s P s ( z )
d P i ± ( z ) dz =( N 2 σ e,i N 1 σ a,i ) Γ i P i ± ( z )±2h ν i Δ ν i N 2 σ e,i Γ i
N 2 = σ a,p ( A core / A ring ) P p h ν p + σ a,s Γ s P s h ν s + i σ a,i Γ i P i h ν i σ a,p ( A core / A ring ) P p h ν p + ( σ a,s + σ e,s ) Γ s P s h ν s + i ( σ a,i + σ e,i ) Γ i P i h ν i + A core /τ N t
N 1 = N t N 2
t ring = d ring,in + d core + d ring,out
F eff = n eff n eff n eff n clad,p
P e = A clad,in A clad,in + A ring
PC E clad = PCE ( A core / A clad,p )

Metrics