Abstract

In this paper, compressive sensing based high-speed time-stretch optical microscopy for two-dimensional (2D) image acquisition is proposed and experimentally demonstrated for the first time. A section of dispersion compensating fiber (DCF) is used to perform wavelength-to-time conversion and then ultrafast spectral shaping of broadband optical pulses can be achieved via high-speed intensity modulation. A 2D spatial disperser comprising a pair of orthogonally oriented dispersers is employed to produce spatially structured illumination for 2D image acquisition and a section of single mode fiber (SMF) is utilized for pulse compression in the optical domain. In our scheme, a 1.2-GHz photodetector and a 50-MHz analog-to-digital converter (ADC) are used to acquire the energy of the compressed pulses. Image reconstructions are demonstrated at a frame rate of 500 kHz and a sixteen-fold image compression is achieved in our proof-of-concept demonstration.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed flow microscopy using compressed sensing with ultrafast laser pulses

Bryan T. Bosworth, Jasper R. Stroud, Dung N. Tran, Trac D. Tran, Sang Chin, and Mark A. Foster
Opt. Express 23(8) 10521-10532 (2015)

Time-stretch microscopy on a DVD for high-throughput imaging cell-based assay

Anson H. L. Tang, P. Yeung, Godfrey C. F. Chan, Barbara P. Chan, Kenneth K. Y. Wong, and Kevin K. Tsia
Biomed. Opt. Express 8(2) 640-652 (2017)

Fast time-lens-based line-scan single-pixel camera with multi-wavelength source

Qiang Guo, Hongwei Chen, Zhiliang Weng, Minghua Chen, Sigang Yang, and Shizhong Xie
Biomed. Opt. Express 6(9) 3610-3617 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006).
    [Crossref] [PubMed]
  2. X. Zhou and S. T. Wong, “Informatics challenges of high-throughput microscopy,” IEEE Signal Process. Mag. 23(3), 63–72 (2006).
    [Crossref]
  3. V. Starkuviene and R. Pepperkok, “The potential of high-content high-throughput microscopy in drug discovery,” Br. J. Pharmacol. 152(1), 62–71 (2007).
    [Crossref] [PubMed]
  4. R. Wollman and N. Stuurman, “High throughput microscopy: from raw images to discoveries,” J. Cell Sci. 120(21), 3715–3722 (2007).
    [Crossref] [PubMed]
  5. K. Pantel and M. Otte, “Occult micrometastasis: enrichment, identification and characterization of single disseminated tumour cells,” Semin. Cancer Biol. 11(5), 327–337 (2001).
    [Crossref] [PubMed]
  6. S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
    [Crossref] [PubMed]
  7. R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
    [Crossref] [PubMed]
  8. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
    [Crossref] [PubMed]
  9. M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104(11), 111101 (2014).
    [Crossref]
  10. C. L. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PLoS One 10(4), e0125106 (2015).
    [Crossref] [PubMed]
  11. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
    [Crossref]
  12. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
    [Crossref]
  13. E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346(9-10), 589–592 (2008).
    [Crossref]
  14. E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
    [Crossref]
  15. J. Romberg, “Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming],” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
    [Crossref]
  16. H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.
  17. B. T. Bosworth and M. A. Foster, “High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing,” in CLEO 2014, OSA Technical Digest (Optical Society of America, 2014), paper ATh4P.3.
  18. B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).
    [Crossref] [PubMed]
  19. Q. Guo, H. Chen, Z. Weng, M. Chen, S. Yang, and S. Xie, “Fast time-lens-based line-scan single-pixel camera with multi-wavelength source,” Biomed. Opt. Express 6(9), 3610–3617 (2015).
    [Crossref] [PubMed]
  20. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [Crossref] [PubMed]
  21. Q. Guo, H. Chen, M. Chen, Z. Weng, Y. Liang, F. Xing, and S. Xie, “High speed two-dimensional temporal compressive sampling microscopic camera,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper ATu1M–2.
  22. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [Crossref] [PubMed]
  23. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new twIst: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
    [Crossref] [PubMed]

2015 (3)

2014 (1)

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104(11), 111101 (2014).
[Crossref]

2012 (1)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

2009 (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

2008 (3)

E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346(9-10), 589–592 (2008).
[Crossref]

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

J. Romberg, “Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming],” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[Crossref]

2007 (3)

V. Starkuviene and R. Pepperkok, “The potential of high-content high-throughput microscopy in drug discovery,” Br. J. Pharmacol. 152(1), 62–71 (2007).
[Crossref] [PubMed]

R. Wollman and N. Stuurman, “High throughput microscopy: from raw images to discoveries,” J. Cell Sci. 120(21), 3715–3722 (2007).
[Crossref] [PubMed]

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new twIst: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref] [PubMed]

2006 (4)

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006).
[Crossref] [PubMed]

X. Zhou and S. T. Wong, “Informatics challenges of high-throughput microscopy,” IEEE Signal Process. Mag. 23(3), 63–72 (2006).
[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

2004 (2)

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

2001 (1)

K. Pantel and M. Otte, “Occult micrometastasis: enrichment, identification and characterization of single disseminated tumour cells,” Semin. Cancer Biol. 11(5), 327–337 (2001).
[Crossref] [PubMed]

1996 (1)

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Asghari, M. H.

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104(11), 111101 (2014).
[Crossref]

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Barbera, T.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

Bergsrud, D. E.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new twIst: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref] [PubMed]

Bosworth, B. T.

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Bruce, R. H.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

Brunelle, S.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Candes, E. J.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Candès, E. J.

E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346(9-10), 589–592 (2008).
[Crossref]

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Chen, C. L.

C. L. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PLoS One 10(4), e0125106 (2015).
[Crossref] [PubMed]

Chen, H.

Chen, L. B.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

Chen, M.

Chin, S.

Curry, D. N.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

Dahl, T.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Di Carlo, D.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

Ellenberg, J.

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006).
[Crossref] [PubMed]

Even, G.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Figueiredo, M. A. T.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new twIst: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref] [PubMed]

Foster, M. A.

Galiger, K.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Goda, K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Guo, Q.

Harris, L.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Herlitz, A.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Ho, M. Y.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

Hsieh, H. B.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Jalali, B.

C. L. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PLoS One 10(4), e0125106 (2015).
[Crossref] [PubMed]

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104(11), 111101 (2014).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Kepros, J. F.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

Kesterson, J.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Kraeft, S. K.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Krivacic, R. T.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

Kuhn, P.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

Ladanyi, A.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Lerner, R. A.

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Mahjoubfar, A.

C. L. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PLoS One 10(4), e0125106 (2015).
[Crossref] [PubMed]

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Otte, M.

K. Pantel and M. Otte, “Occult micrometastasis: enrichment, identification and characterization of single disseminated tumour cells,” Semin. Cancer Biol. 11(5), 327–337 (2001).
[Crossref] [PubMed]

Pantel, K.

K. Pantel and M. Otte, “Occult micrometastasis: enrichment, identification and characterization of single disseminated tumour cells,” Semin. Cancer Biol. 11(5), 327–337 (2001).
[Crossref] [PubMed]

Pepperkok, R.

V. Starkuviene and R. Pepperkok, “The potential of high-content high-throughput microscopy in drug discovery,” Br. J. Pharmacol. 152(1), 62–71 (2007).
[Crossref] [PubMed]

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006).
[Crossref] [PubMed]

Romberg, J.

J. Romberg, “Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming],” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[Crossref]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Salgia, R.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Sher, A. C.

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

Shirasaki, M.

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Starkuviene, V.

V. Starkuviene and R. Pepperkok, “The potential of high-content high-throughput microscopy in drug discovery,” Br. J. Pharmacol. 152(1), 62–71 (2007).
[Crossref] [PubMed]

Stroud, J. R.

Stuurman, N.

R. Wollman and N. Stuurman, “High throughput microscopy: from raw images to discoveries,” J. Cell Sci. 120(21), 3715–3722 (2007).
[Crossref] [PubMed]

Tao, T.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Tran, D. N.

Tran, T. D.

Tsia, K. K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Wakin, M. B.

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Wang, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Weng, Z.

Wollman, R.

R. Wollman and N. Stuurman, “High throughput microscopy: from raw images to discoveries,” J. Cell Sci. 120(21), 3715–3722 (2007).
[Crossref] [PubMed]

Wong, S. T.

X. Zhou and S. T. Wong, “Informatics challenges of high-throughput microscopy,” IEEE Signal Process. Mag. 23(3), 63–72 (2006).
[Crossref]

Xie, S.

Yang, S.

Zhou, X.

X. Zhou and S. T. Wong, “Informatics challenges of high-throughput microscopy,” IEEE Signal Process. Mag. 23(3), 63–72 (2006).
[Crossref]

Appl. Phys. Lett. (1)

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104(11), 111101 (2014).
[Crossref]

Biomed. Opt. Express (1)

Br. J. Pharmacol. (1)

V. Starkuviene and R. Pepperkok, “The potential of high-content high-throughput microscopy in drug discovery,” Br. J. Pharmacol. 152(1), 62–71 (2007).
[Crossref] [PubMed]

C. R. Math. (1)

E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346(9-10), 589–592 (2008).
[Crossref]

Clin. Cancer Res. (1)

S. K. Kraeft, A. Ladanyi, K. Galiger, A. Herlitz, A. C. Sher, D. E. Bergsrud, G. Even, S. Brunelle, L. Harris, R. Salgia, T. Dahl, J. Kesterson, and L. B. Chen, “Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system,” Clin. Cancer Res. 10(9), 3020–3028 (2004).
[Crossref] [PubMed]

IEEE Signal Process. Mag. (3)

X. Zhou and S. T. Wong, “Informatics challenges of high-throughput microscopy,” IEEE Signal Process. Mag. 23(3), 63–72 (2006).
[Crossref]

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

J. Romberg, “Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming],” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[Crossref]

IEEE Trans. Image Process. (1)

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new twIst: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref] [PubMed]

IEEE Trans. Inf. Theory (2)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

J. Cell Sci. (1)

R. Wollman and N. Stuurman, “High throughput microscopy: from raw images to discoveries,” J. Cell Sci. 120(21), 3715–3722 (2007).
[Crossref] [PubMed]

Nat. Rev. Mol. Cell Biol. (1)

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006).
[Crossref] [PubMed]

Nature (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

PLoS One (1)

C. L. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PLoS One 10(4), e0125106 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, “A rare-cell detector for cancer,” Proc. Natl. Acad. Sci. U.S.A. 101(29), 10501–10504 (2004).
[Crossref] [PubMed]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Semin. Cancer Biol. (1)

K. Pantel and M. Otte, “Occult micrometastasis: enrichment, identification and characterization of single disseminated tumour cells,” Semin. Cancer Biol. 11(5), 327–337 (2001).
[Crossref] [PubMed]

Other (3)

Q. Guo, H. Chen, M. Chen, Z. Weng, Y. Liang, F. Xing, and S. Xie, “High speed two-dimensional temporal compressive sampling microscopic camera,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper ATu1M–2.

H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.

B. T. Bosworth and M. A. Foster, “High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing,” in CLEO 2014, OSA Technical Digest (Optical Society of America, 2014), paper ATh4P.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The architecture of the 2D spatial disperser and the produced two-dimensional array of frequency comb modes. Each ‘dot’ represents an individual mode. The dots within a row which is tilted by the grating dispersion are separated by the VIPA FSR, and the dots within a column which is tilted by the VIPA dispersion are separated by the comb spacing. The manner in which successive modes are indexed and counted is indicated by the arrows in the leftmost two columns.
Fig. 2
Fig. 2 Experimental setup of the proposed CS based high-speed time-stretch optical microscope. MLL: mode-locked laser, DCF: dispersion compensating fiber, EDFA: Erbium-doped fiber amplifier, MZM: Mach-Zehnder modulator, PPG: pulse pattern generator, PRBS: pseudo-random binary sequence, Cir: circulator, VIPA: virtually-imaged phased array, SMF: single mode fiber, PD: photo-detector, DSP: digital signal processor.
Fig. 3
Fig. 3 (a) The temporal waveform of the PRBS-modulated optical pulses. (b) The temporal waveform of the optical pulses after compression. (c) The spectrum of the optical pulses after passing through the 2D spatial disperser. (d) The spectrum of the optical pulses after reflecting off the object. Inset: the reconstructed 2D image of size 46 × 35.
Fig. 4
Fig. 4 (a) The reconstructed 2D images without CS. Image reconstructions at compression ratios of (b) 5%, (c) 6.25%, (d) 12.5% and (e) 18.75%.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x=ψθ
y=Φx+e
min θ θ 1 subject to y-ΦΨθ 2 σ
N=Δλ| D | R PRBS
argmin={ 1 2 y-Aθ 2 +λΦ(θ)}
MSE= 1 mn i=1 m j=1 n I(i,j)K(i,j) 2
PSNR=10lg( MA X I 2 MSE )=20lg( MA X I MSE )

Metrics