Abstract

Synchronized time-lens source has emerged as a promising solution for two-color synchronized ultrashort laser source. Various experiments have demonstrated that the synchronized time-lens source is especially suitable for applications in coherent Raman scattering (CRS) imaging and spectroscopy. In a synchronized time-lens source, phase modulators are typically driven by a filtered high-order harmonic (sine wave) of the fundamental repetition rate of the mode-locked laser. The bandwidth of the narrowband RF filter for this high-order harmonic is thus a programmable parameter for optimizing the performance of the time-lens source. In this paper, through both analytical and numerical investigations we demonstrate that, manipulating the bandwidth of RF filtering can reduce the pulse with of the synchronized time-lens source. This is potentially helpful for reducing the overall system complexity or extending the synchronized time-lens source to the femtosecond level.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Timing jitter in synchronized time-lens source for coherent Raman scattering imaging

Ping Qiu and Ke Wang
Opt. Express 23(14) 18786-18791 (2015)

Synchronized time-lens source for coherent Raman scattering microscopy

Ke Wang, Christian W. Freudiger, Jennifer H. Lee, Brian G. Saar, X. Sunney Xie, and Chris Xu
Opt. Express 18(23) 24019-24024 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14(12), 630–632 (1989).
    [Crossref] [PubMed]
  2. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006).
    [Crossref]
  3. T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
    [Crossref]
  4. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
    [Crossref]
  5. J. van Howe, J. H. Lee, and C. Xu, “Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking,” Opt. Lett. 32(11), 1408–1410 (2007).
    [Crossref] [PubMed]
  6. K. Wang and C. Xu, “Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source,” Opt. Lett. 36(6), 942–944 (2011).
    [Crossref] [PubMed]
  7. K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
    [Crossref] [PubMed]
  8. K. Wang and C. Xu, “Fiber-delivered picosecond source for coherent Raman scattering imaging,” Opt. Lett. 36(21), 4233–4235 (2011).
    [Crossref] [PubMed]
  9. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  10. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  11. K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, J. X. Cheng, and C. Xu, “High-sensitivity, hyperspectral stimulated Raman scattering imaging through spectral- transformed excitation,” J. Biophotonics 6, 815 (2013).
    [PubMed]
  12. D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy,” submitted.
  13. K. Wang, J. H. Lee, Y. T. Dai, J. Cheng, and C. Xu, “All-fiber, versatile picosecond time-lens light source and its application to Cerenkov radiation generation in higher order mode fiber,” in Lasers and Electro-Optics, Conference, OSA Technical Digest (CD) (OSA, 2010), 1–2.
    [Crossref]
  14. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
    [Crossref]
  15. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
    [Crossref] [PubMed]
  16. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
    [Crossref] [PubMed]
  17. C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
    [Crossref]
  18. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser,” Opt. Lett. 32(24), 3504–3506 (2007).
    [Crossref] [PubMed]

2013 (1)

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, J. X. Cheng, and C. Xu, “High-sensitivity, hyperspectral stimulated Raman scattering imaging through spectral- transformed excitation,” J. Biophotonics 6, 815 (2013).
[PubMed]

2011 (2)

2010 (1)

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2007 (4)

2006 (3)

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[Crossref]

J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

2005 (1)

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
[Crossref]

2001 (1)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1989 (1)

Adler, F.

Book, L. D.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Charan, K.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, J. X. Cheng, and C. Xu, “High-sensitivity, hyperspectral stimulated Raman scattering imaging through spectral- transformed excitation,” J. Biophotonics 6, 815 (2013).
[PubMed]

Chen, B. J.

Cheng, J. X.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, J. X. Cheng, and C. Xu, “High-sensitivity, hyperspectral stimulated Raman scattering imaging through spectral- transformed excitation,” J. Biophotonics 6, 815 (2013).
[PubMed]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Cheng, J.-X.

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy,” submitted.

Freudiger, C. W.

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fu, D.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Huang, C.-B.

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[Crossref]

Huber, R.

Jiang, Z.

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kawanishi, S.

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
[Crossref]

Kolner, B. H.

Komukai, T.

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
[Crossref]

Lavrentovich, O.

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy,” submitted.

Leaird, D. E.

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[Crossref]

Lee, J. H.

Leitenstorfer, A.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Matthews, T. E.

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[Crossref] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Nazarathy, M.

Saar, B. G.

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Sell, A.

Slipchenko, M. N.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, J. X. Cheng, and C. Xu, “High-sensitivity, hyperspectral stimulated Raman scattering imaging through spectral- transformed excitation,” J. Biophotonics 6, 815 (2013).
[PubMed]

Sotier, F.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

van Howe, J.

Volkmer, A.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Wang, K.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, J. X. Cheng, and C. Xu, “High-sensitivity, hyperspectral stimulated Raman scattering imaging through spectral- transformed excitation,” J. Biophotonics 6, 815 (2013).
[PubMed]

K. Wang and C. Xu, “Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source,” Opt. Lett. 36(6), 942–944 (2011).
[Crossref] [PubMed]

K. Wang and C. Xu, “Fiber-delivered picosecond source for coherent Raman scattering imaging,” Opt. Lett. 36(21), 4233–4235 (2011).
[Crossref] [PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy,” submitted.

Wang, P.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, J. X. Cheng, and C. Xu, “High-sensitivity, hyperspectral stimulated Raman scattering imaging through spectral- transformed excitation,” J. Biophotonics 6, 815 (2013).
[PubMed]

Warren, W. S.

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[Crossref] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

Weiner, A. M.

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

Xiang, J.

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy,” submitted.

Xie, X. S.

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Xu, C.

Yamamoto, T.

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
[Crossref]

Ye, T.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[Crossref] [PubMed]

Yurtserver, G.

Yurtsever, G.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

Zhang, D.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, J. X. Cheng, and C. Xu, “High-sensitivity, hyperspectral stimulated Raman scattering imaging through spectral- transformed excitation,” J. Biophotonics 6, 815 (2013).
[PubMed]

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy,” submitted.

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Electron. Lett. (1)

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

IEEE Photonics Lett. (1)

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
[Crossref]

J. Biomed. Opt. (1)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

J. Biophotonics (1)

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, J. X. Cheng, and C. Xu, “High-sensitivity, hyperspectral stimulated Raman scattering imaging through spectral- transformed excitation,” J. Biophotonics 6, 815 (2013).
[PubMed]

J. Lightwave Technol. (1)

J. Phys. Chem. B (1)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Other (2)

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy,” submitted.

K. Wang, J. H. Lee, Y. T. Dai, J. Cheng, and C. Xu, “All-fiber, versatile picosecond time-lens light source and its application to Cerenkov radiation generation in higher order mode fiber,” in Lasers and Electro-Optics, Conference, OSA Technical Digest (CD) (OSA, 2010), 1–2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Block diagram of the synchronized time-lens source for CRS imaging. PM: phase modulator, MZ: Mach-Zehnder intensity modulator, DC: dispersion compensator, Filter: RF filter centered at 10 GHz, PD: fast photodetector. Electrical paths are labeled with blue dashed lines, and optical paths are labeled with red solid lines.
Fig. 2
Fig. 2 (a) Bandwidth (black squares) and compressed pulse width (red circles) for different side peak amplitude a. (b) Normalized intensity profile of the compressed pulse for a = 0 (black) and a = 1 (red). (c) Frequency chirp for a = 0 (black) and a = 1 (red). Quadratic phase compensation in the frequency domain only.
Fig. 3
Fig. 3 Bandwidth (a) and compressed pulse width (b) for different numbers of RF tones. Quadratic phase compensation in the frequency domain only.
Fig. 4
Fig. 4 Spectra (a,c,e) and the corresponding normalized intensity profiles of the compressed pulse (b,d,f) for driving signals with one RF tone (a,b), 21RF tones (c,d), and 249 RF tones (e,f). Quadratic phase compensation in the frequency domain only.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E 0 exp { i π V p p cos ( ω R F t ) / 2 V π } ,
cos ( ω R F t ) = 1 ( ω R F t ) 2 2 .
ϕ ( t ) = π V p p ( ω R F t ) 2 4 V π .
δ ω ( t ) = ϕ ( t ) t = π V p p ω R F 2 t 2 V π
ϕ ( t ) = π V p p 2 V π { cos ( ω R F t ) + a c o s [ ( ω R F + ω R R ) t ] + a c o s [ ( ω R F ω R R ) t ] } ,
ω R F = N ω R R .
ϕ ( t ) = π V p p 2 V π [ 1 + 2 a cos ( ω R R t ) ] cos ( N ω R R t ) .
ϕ ( t ) = π V p p 2 V π ( a ω R R 2 + N 2 ω R R 2 2 + a N 2 ω R R 2 ) t 2 .
δ ω ( t ) = π V p p V π ( a + N 2 2 + a N 2 ) ω R R 2 t .
P = 1 R T T 2 T 2 ( V p p 2 ) 2 [ 1 + 2 a cos ( ω R R t ) ] 2 cos 2 ( N ω R R t ) d y = V p p 2 8 R ( 1 + 2 a 2 ) ,
V p p = 8 R P 1 + 2 a 2 .
1 1 + 2 a 2 ( a + N 2 2 + a N 2 ) ,
V ( t ) = V p p 2 k = m m cos [ ( ω R F + k ω R R ) t ] ,
P = 1 R T T 2 T 2 V 2 ( t ) d t = ( 1 + 2 m ) V p p 2 8 R .
V p p = 8 R P 1 + 2 m .
1 1 + 2 m [ ( 1 + 2 m ) N 2 + k = 1 m k 2 ] .
1 + 2 m N 2 .

Metrics