Abstract

We theoretically propose and experimentally demonstrate an approach to achieve temporal manipulation of light propagation via cross-intensity modulation (XIM) effect in an unbalanced fiber Mach-Zehnder interferometer (MZI). By changing the optical loss indices (which can also be gain indices theoretically) discrepantly in the two branches of the MZI, we can obtain the largest time shifts at the minima of the transmission frequency spectrum, while there shows no time shifts at the maxima. This scheme provides a flexibility of ultra-wide bandwidth operation both on optical wavelength and modulation frequency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mach–Zehnder interferometer employing coupled-resonator optical waveguides

Alejandro Martinez, Amadeu Griol, Pablo Sanchis, and Javier Marti
Opt. Lett. 28(6) 405-407 (2003)

Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers

Jianji Dong, Aoling Zheng, Dingshan Gao, Lei Lei, Dexiu Huang, and Xinliang Zhang
Opt. Express 21(6) 7014-7024 (2013)

Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon

Chong Zhang, Paul A. Morton, Jacob B. Khurgin, Jon D. Peters, and John E. Bowers
Optica 3(12) 1483-1488 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [Crossref] [PubMed]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [Crossref] [PubMed]
  4. L. Zhang, L. Zhan, K. Qian, J. Liu, Q. Shen, X. Hu, and S. Luo, “Superluminal propagation at negative group velocity in optical fibers based on Brillouin lasing oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
    [Crossref] [PubMed]
  5. A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides,” Phys. Rev. Lett. 97(22), 223902 (2006).
    [Crossref] [PubMed]
  6. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
    [Crossref] [PubMed]
  7. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [Crossref]
  8. W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
    [Crossref]
  9. S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
    [Crossref]
  10. H. N. Yum, M. E. Kim, Y. J. Jang, and M. S. Shahriar, “Distortion free pulse delay system using a pair of tunable white light cavities,” Opt. Express 19(7), 6705–6713 (2011).
    [PubMed]
  11. M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
    [Crossref]
  12. L. Zhang, L. Zhan, M. Qin, Z. Wang, H. Luo, and T. Wang, “Superluminal propagation through 500 m optical fiber via stimulated Brillouin scattering,” Opt. Lett. 40(19), 4404–4407 (2015).
    [Crossref] [PubMed]
  13. D. Wei, U. Bortolozzo, J. P. Huignard, and S. Residori, “Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics,” Opt. Express 21(17), 19544–19554 (2013).
    [Crossref] [PubMed]
  14. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
    [Crossref] [PubMed]
  15. J. F. Galisteo-López, M. Galli, A. Balestreri, M. Patrini, L. C. Andreani, and C. López, “Slow to superluminal light waves in thin 3D photonic crystals,” Opt. Express 15(23), 15342–15350 (2007).
    [Crossref] [PubMed]
  16. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  17. K. Qian, L. Zhan, H. Li, X. Hu, J. Peng, L. Zhang, and Y. Xia, “Tunable delay slow-light in an active fiber Bragg grating,” Opt. Express 17(24), 22217–22222 (2009).
    [Crossref] [PubMed]
  18. E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
    [Crossref]
  19. M. Sánchez-López, A. Sánchez-Meroño, J. Arias, J. Davis, and I. Moreno, “Observation of superluminal and negative group velocities in a Mach–Zehnder interferometer,” Appl. Phys. Lett. 93(7), 074102 (2008).
    [Crossref]
  20. W. Robertson, J. Pappafotis, P. Flannigan, J. Cathey, B. Cathey, and C. Klaus, “Sound beyond the speed of light: Measurement of negative group velocity in an acoustic loop filter,” Appl. Phys. Lett. 90(1), 014102 (2007).
    [Crossref]
  21. J. Arias, A. Sánchez-Meroño, M. Sánchez-López, and I. Moreno, “Slow and fast light in three-beam interferometers: Theory and experiment,” Phys. Rev. A 85(3), 033815 (2012).
    [Crossref]
  22. A. Sánchez-Meroño, M. Mar Sánchez-López, and J. Arias, “Fast light in unbalanced low-loss Mach-Zehnder interferometers,” Phys. Rev. A 89(4), 043828 (2014).
    [Crossref]
  23. C. Feng, L. Zhang, H. Luo, C. Gao, L. He, J. Liu, and L. Zhan, “Fast-light-assisted four-wave mixing in the photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
    [Crossref] [PubMed]
  24. M. Merklein, I. V. Kabakova, T. F. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
    [Crossref] [PubMed]
  25. S. Sternklar, E. Sarid, A. Arbel, and E. Granot, “Brillouin cross-gain modulation and 10 m/s group velocity,” Opt. Lett. 34(18), 2832–2834 (2009).
    [Crossref] [PubMed]
  26. K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett. 36(12), 2185–2187 (2011).
    [Crossref] [PubMed]
  27. F. Tao, L. Zhan, X. Yang, Z. Gu, J. Peng, and S. Luo, “Group velocity manipulation of 10 Gb/s signal by mutually-modulated cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 26(6), 606–608 (2014).
    [Crossref]

2015 (3)

2014 (2)

A. Sánchez-Meroño, M. Mar Sánchez-López, and J. Arias, “Fast light in unbalanced low-loss Mach-Zehnder interferometers,” Phys. Rev. A 89(4), 043828 (2014).
[Crossref]

F. Tao, L. Zhan, X. Yang, Z. Gu, J. Peng, and S. Luo, “Group velocity manipulation of 10 Gb/s signal by mutually-modulated cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 26(6), 606–608 (2014).
[Crossref]

2013 (1)

2012 (1)

J. Arias, A. Sánchez-Meroño, M. Sánchez-López, and I. Moreno, “Slow and fast light in three-beam interferometers: Theory and experiment,” Phys. Rev. A 85(3), 033815 (2012).
[Crossref]

2011 (3)

2010 (1)

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]

2009 (3)

2008 (2)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

M. Sánchez-López, A. Sánchez-Meroño, J. Arias, J. Davis, and I. Moreno, “Observation of superluminal and negative group velocities in a Mach–Zehnder interferometer,” Appl. Phys. Lett. 93(7), 074102 (2008).
[Crossref]

2007 (3)

W. Robertson, J. Pappafotis, P. Flannigan, J. Cathey, B. Cathey, and C. Klaus, “Sound beyond the speed of light: Measurement of negative group velocity in an acoustic loop filter,” Appl. Phys. Lett. 90(1), 014102 (2007).
[Crossref]

J. F. Galisteo-López, M. Galli, A. Balestreri, M. Patrini, L. C. Andreani, and C. López, “Slow to superluminal light waves in thin 3D photonic crystals,” Opt. Express 15(23), 15342–15350 (2007).
[Crossref] [PubMed]

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

2006 (1)

A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides,” Phys. Rev. Lett. 97(22), 223902 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (1)

E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
[Crossref]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

2000 (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Akjouj, A.

E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
[Crossref]

Andreani, L. C.

Arbel, A.

Arias, J.

A. Sánchez-Meroño, M. Mar Sánchez-López, and J. Arias, “Fast light in unbalanced low-loss Mach-Zehnder interferometers,” Phys. Rev. A 89(4), 043828 (2014).
[Crossref]

J. Arias, A. Sánchez-Meroño, M. Sánchez-López, and I. Moreno, “Slow and fast light in three-beam interferometers: Theory and experiment,” Phys. Rev. A 85(3), 033815 (2012).
[Crossref]

M. Sánchez-López, A. Sánchez-Meroño, J. Arias, J. Davis, and I. Moreno, “Observation of superluminal and negative group velocities in a Mach–Zehnder interferometer,” Appl. Phys. Lett. 93(7), 074102 (2008).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Balestreri, A.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

Bortolozzo, U.

Boudouti, E.

E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
[Crossref]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

Büttner, T. F.

M. Merklein, I. V. Kabakova, T. F. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref] [PubMed]

Capmany, J.

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

Cathey, B.

W. Robertson, J. Pappafotis, P. Flannigan, J. Cathey, B. Cathey, and C. Klaus, “Sound beyond the speed of light: Measurement of negative group velocity in an acoustic loop filter,” Appl. Phys. Lett. 90(1), 014102 (2007).
[Crossref]

Cathey, J.

W. Robertson, J. Pappafotis, P. Flannigan, J. Cathey, B. Cathey, and C. Klaus, “Sound beyond the speed of light: Measurement of negative group velocity in an acoustic loop filter,” Appl. Phys. Lett. 90(1), 014102 (2007).
[Crossref]

Chang-Hasnain, C. J.

Choi, D. Y.

M. Merklein, I. V. Kabakova, T. F. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref] [PubMed]

Dahan, D.

Davis, J.

M. Sánchez-López, A. Sánchez-Meroño, J. Arias, J. Davis, and I. Moreno, “Observation of superluminal and negative group velocities in a Mach–Zehnder interferometer,” Appl. Phys. Lett. 93(7), 074102 (2008).
[Crossref]

Djafari-Rouhani, B.

E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
[Crossref]

Dobrzynski, L.

E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
[Crossref]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Eggleton, B. J.

M. Merklein, I. V. Kabakova, T. F. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref] [PubMed]

Eisenstein, G.

Feng, C.

Fettouhi, N.

E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
[Crossref]

Flannigan, P.

W. Robertson, J. Pappafotis, P. Flannigan, J. Cathey, B. Cathey, and C. Klaus, “Sound beyond the speed of light: Measurement of negative group velocity in an acoustic loop filter,” Appl. Phys. Lett. 90(1), 014102 (2007).
[Crossref]

Galisteo-López, J. F.

Galli, M.

Gao, C.

Gasulla, I.

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]

Gopal, V.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Govyadinov, A. A.

A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides,” Phys. Rev. Lett. 97(22), 223902 (2006).
[Crossref] [PubMed]

Granot, E.

Gu, Z.

F. Tao, L. Zhan, X. Yang, Z. Gu, J. Peng, and S. Luo, “Group velocity manipulation of 10 Gb/s signal by mutually-modulated cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 26(6), 606–608 (2014).
[Crossref]

Gu, Z. C.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

He, L.

Hu, X.

Huignard, J. P.

Jang, Y. J.

Kabakova, I. V.

M. Merklein, I. V. Kabakova, T. F. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref] [PubMed]

Kim, M. E.

Klaus, C.

W. Robertson, J. Pappafotis, P. Flannigan, J. Cathey, B. Cathey, and C. Klaus, “Sound beyond the speed of light: Measurement of negative group velocity in an acoustic loop filter,” Appl. Phys. Lett. 90(1), 014102 (2007).
[Crossref]

Ku, P. C.

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

Li, H.

Liu, J.

C. Feng, L. Zhang, H. Luo, C. Gao, L. He, J. Liu, and L. Zhan, “Fast-light-assisted four-wave mixing in the photonic bandgap,” Opt. Lett. 40(12), 2790–2793 (2015).
[Crossref] [PubMed]

L. Zhang, L. Zhan, K. Qian, J. Liu, Q. Shen, X. Hu, and S. Luo, “Superluminal propagation at negative group velocity in optical fibers based on Brillouin lasing oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref] [PubMed]

López, C.

Luo, H.

Luo, S.

F. Tao, L. Zhan, X. Yang, Z. Gu, J. Peng, and S. Luo, “Group velocity manipulation of 10 Gb/s signal by mutually-modulated cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 26(6), 606–608 (2014).
[Crossref]

L. Zhang, L. Zhan, K. Qian, J. Liu, Q. Shen, X. Hu, and S. Luo, “Superluminal propagation at negative group velocity in optical fibers based on Brillouin lasing oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref] [PubMed]

Luo, S. Y.

Luther-Davies, B.

M. Merklein, I. V. Kabakova, T. F. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref] [PubMed]

Madden, S. J.

M. Merklein, I. V. Kabakova, T. F. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref] [PubMed]

Mar Sánchez-López, M.

A. Sánchez-Meroño, M. Mar Sánchez-López, and J. Arias, “Fast light in unbalanced low-loss Mach-Zehnder interferometers,” Phys. Rev. A 89(4), 043828 (2014).
[Crossref]

Merklein, M.

M. Merklein, I. V. Kabakova, T. F. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref] [PubMed]

Messall, M.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Mir, A.

E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
[Crossref]

Moreno, I.

J. Arias, A. Sánchez-Meroño, M. Sánchez-López, and I. Moreno, “Slow and fast light in three-beam interferometers: Theory and experiment,” Phys. Rev. A 85(3), 033815 (2012).
[Crossref]

M. Sánchez-López, A. Sánchez-Meroño, J. Arias, J. Davis, and I. Moreno, “Observation of superluminal and negative group velocities in a Mach–Zehnder interferometer,” Appl. Phys. Lett. 93(7), 074102 (2008).
[Crossref]

Mork, J.

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]

Mørk, J.

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

Pappafotis, J.

W. Robertson, J. Pappafotis, P. Flannigan, J. Cathey, B. Cathey, and C. Klaus, “Sound beyond the speed of light: Measurement of negative group velocity in an acoustic loop filter,” Appl. Phys. Lett. 90(1), 014102 (2007).
[Crossref]

Pati, G.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Patrini, M.

Peng, J.

F. Tao, L. Zhan, X. Yang, Z. Gu, J. Peng, and S. Luo, “Group velocity manipulation of 10 Gb/s signal by mutually-modulated cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 26(6), 606–608 (2014).
[Crossref]

K. Qian, L. Zhan, H. Li, X. Hu, J. Peng, L. Zhang, and Y. Xia, “Tunable delay slow-light in an active fiber Bragg grating,” Opt. Express 17(24), 22217–22222 (2009).
[Crossref] [PubMed]

Peng, J. S.

Podolskiy, V. A.

A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides,” Phys. Rev. Lett. 97(22), 223902 (2006).
[Crossref] [PubMed]

Qian, K.

Qin, M.

Residori, S.

Robertson, W.

W. Robertson, J. Pappafotis, P. Flannigan, J. Cathey, B. Cathey, and C. Klaus, “Sound beyond the speed of light: Measurement of negative group velocity in an acoustic loop filter,” Appl. Phys. Lett. 90(1), 014102 (2007).
[Crossref]

Sales, S.

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

Salit, K.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Sánchez-López, M.

J. Arias, A. Sánchez-Meroño, M. Sánchez-López, and I. Moreno, “Slow and fast light in three-beam interferometers: Theory and experiment,” Phys. Rev. A 85(3), 033815 (2012).
[Crossref]

M. Sánchez-López, A. Sánchez-Meroño, J. Arias, J. Davis, and I. Moreno, “Observation of superluminal and negative group velocities in a Mach–Zehnder interferometer,” Appl. Phys. Lett. 93(7), 074102 (2008).
[Crossref]

Sánchez-Meroño, A.

A. Sánchez-Meroño, M. Mar Sánchez-López, and J. Arias, “Fast light in unbalanced low-loss Mach-Zehnder interferometers,” Phys. Rev. A 89(4), 043828 (2014).
[Crossref]

J. Arias, A. Sánchez-Meroño, M. Sánchez-López, and I. Moreno, “Slow and fast light in three-beam interferometers: Theory and experiment,” Phys. Rev. A 85(3), 033815 (2012).
[Crossref]

M. Sánchez-López, A. Sánchez-Meroño, J. Arias, J. Davis, and I. Moreno, “Observation of superluminal and negative group velocities in a Mach–Zehnder interferometer,” Appl. Phys. Lett. 93(7), 074102 (2008).
[Crossref]

Sarid, E.

Shahriar, M.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Shahriar, M. S.

Shen, Q.

L. Zhang, L. Zhan, K. Qian, J. Liu, Q. Shen, X. Hu, and S. Luo, “Superluminal propagation at negative group velocity in optical fibers based on Brillouin lasing oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref] [PubMed]

Sternklar, S.

Tao, F.

F. Tao, L. Zhan, X. Yang, Z. Gu, J. Peng, and S. Luo, “Group velocity manipulation of 10 Gb/s signal by mutually-modulated cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 26(6), 606–608 (2014).
[Crossref]

Tripathi, R.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Tucker, R. S.

Vasseur, J.

E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
[Crossref]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

Wang, T.

Wang, Z.

Wei, D.

Xia, Y.

Xia, Y. X.

Xue, W.

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

Yang, X.

F. Tao, L. Zhan, X. Yang, Z. Gu, J. Peng, and S. Luo, “Group velocity manipulation of 10 Gb/s signal by mutually-modulated cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 26(6), 606–608 (2014).
[Crossref]

Yum, H. N.

Zemmouri, J.

E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
[Crossref]

Zhan, L.

Zhang, L.

Zhu, Z. Q.

Appl. Phys. Lett. (2)

M. Sánchez-López, A. Sánchez-Meroño, J. Arias, J. Davis, and I. Moreno, “Observation of superluminal and negative group velocities in a Mach–Zehnder interferometer,” Appl. Phys. Lett. 93(7), 074102 (2008).
[Crossref]

W. Robertson, J. Pappafotis, P. Flannigan, J. Cathey, B. Cathey, and C. Klaus, “Sound beyond the speed of light: Measurement of negative group velocity in an acoustic loop filter,” Appl. Phys. Lett. 90(1), 014102 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Tao, L. Zhan, X. Yang, Z. Gu, J. Peng, and S. Luo, “Group velocity manipulation of 10 Gb/s signal by mutually-modulated cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 26(6), 606–608 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]

J. Appl. Phys. (1)

E. Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. Vasseur, L. Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures,” J. Appl. Phys. 95(3), 1102–1113 (2004).
[Crossref]

J. Lightwave Technol. (1)

Nat. Commun. (1)

M. Merklein, I. V. Kabakova, T. F. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6, 6396 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nature (2)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. A (3)

J. Arias, A. Sánchez-Meroño, M. Sánchez-López, and I. Moreno, “Slow and fast light in three-beam interferometers: Theory and experiment,” Phys. Rev. A 85(3), 033815 (2012).
[Crossref]

A. Sánchez-Meroño, M. Mar Sánchez-López, and J. Arias, “Fast light in unbalanced low-loss Mach-Zehnder interferometers,” Phys. Rev. A 89(4), 043828 (2014).
[Crossref]

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Phys. Rev. Lett. (3)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[Crossref] [PubMed]

L. Zhang, L. Zhan, K. Qian, J. Liu, Q. Shen, X. Hu, and S. Luo, “Superluminal propagation at negative group velocity in optical fibers based on Brillouin lasing oscillation,” Phys. Rev. Lett. 107(9), 093903 (2011).
[Crossref] [PubMed]

A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides,” Phys. Rev. Lett. 97(22), 223902 (2006).
[Crossref] [PubMed]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of a fiber-based MZI and its phase relationship of the pulse between two arms.
Fig. 2
Fig. 2 Experimental setup.
Fig. 3
Fig. 3 Transmittance of the MZI under different loss index e α 2 , e α 1 is settled at 0.44.
Fig. 4
Fig. 4 Transmitted light pulses and the time shifts around the transmission minima and maxima under different losses. The direction of the arrows shows the delay or advancement of the pulses.
Fig. 5
Fig. 5 (a) The delays or advancements under different losses. (b) The largest time shifts within a frequency period. (c) Maximum fractional delays or advancements.
Fig. 6
Fig. 6 Maximum absolute and fractional time shifts when reverse the loss scheme on two arms.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

t ^ = 1 2 i=1 2 E o 2 e α i m p e j φ ^ i ( i= 1, 2 )
φ i = nω c L i + φ 0
L= ( L 1 + L 2 ) /2 and Δ= L 2 L 1
| t ^ (β) |= A 2 e 2 α 1 +2 e ( α 1 + α 2 ) cos(β)+ e 2 α 2
η= ( e α 2 e α 1 ) /2 and ζ= ( e α 1 + e α 2 ) /2
φ t = ωn c L+arctan[ η ζ tan( β 2 )]+ φ 0
t d = Ln c + φ 0 +arctan[ηtan(β/2)/ζ] ω

Metrics