Abstract

Waveguide-coupled optical resonators have played an important role in a wide range of applications including optical communication, sensing, nonlinear optics, slow/fast light, and cavity QED. In such a system, the coupling regimes strongly affect the resonance feature in the light transmission spectra, and hence the performance and outcomes of the applications. Therefore it is crucial to control the coupling between the waveguide and the microresonator. In this work, we investigated a fiber-taper coupled whispering-gallery-mode microresonator system, in which the coupling regime is traditionally controlled by adjusting the distance between the resonator and the fiber-taper mechanically. We propose and experimentally demonstrate that by utilizing Raman gain one can achieve on-demand control of the coupling regime without any mechanical movement in the resonator system. Particularly, the application of Raman gain is accompanied by Q enhancement. We also show that with the help of Raman gain control, the transitions between various coupling regimes can affect the light transmission spectra so as to provide better resolvability and signal amplification. This all-optical approach is also suitable for monolithically integrated and packaged waveguide-resonator systems, whose coupling regime is fixed at the time of manufacturing. It provides an effective route to control the light transmission in a waveguide-couple resonator system without mechanically moving individual optical components.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators

Xiao-Fei Liu, Fuchuan Lei, Ming Gao, Xu Yang, Chuan Wang, Şahin Kaya Özdemir, Lan Yang, and Gui-Lu Long
Opt. Express 24(9) 9550-9560 (2016)

A general model for taper coupling of multiple modes of whispering gallery resonators and application to analysis of coupling-induced Fano interference in a single cavity

Shahab Bakhtiari Gorajoobi, Ganapathy Senthil Murugan, and Michalis N. Zervas
Opt. Express 27(18) 25493-25501 (2019)

Efficient excitation and phase matching of fiber-coupled degenerate whispering gallery modes

Shahab Bakhtiari Gorajoobi, Ganapathy Senthil Murugan, and Michalis N. Zervas
J. Opt. Soc. Am. B 36(9) 2452-2460 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref] [PubMed]
  2. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  3. F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref]
  4. L. He, Ş. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
    [Crossref]
  5. J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
    [Crossref]
  6. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
    [Crossref] [PubMed]
  7. Y. B. Sheng, J. Liu, S. Y. Zhao, and L. Zhou, “Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system,” Chinese Sci. Bull. 59, 3507–3513 (2013).
    [Crossref]
  8. C. Wang, L. Y. He, Y. Zhang, H. Q. Ma, and R. Zhang, “Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system,” Sci. China - Phys. Mech. Astron. 56, 2054–2058 (2013).
    [Crossref]
  9. L. Yang and K. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592–594 (2003).
    [Crossref] [PubMed]
  10. B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70, 033803 (2004).
    [Crossref]
  11. L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
    [Crossref]
  12. B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
    [Crossref]
  13. J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” Selected Topics in Quantum Electronics, IEEE Journal of  12, 143–147 (2006).
    [Crossref]
  14. S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
    [Crossref] [PubMed]
  15. L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).
    [Crossref]
  16. L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35, 256–258 (2010).
    [Crossref] [PubMed]
  17. T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
    [Crossref]
  18. B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
    [Crossref]
  19. F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
    [Crossref]
  20. J. D. Bradley, E. S. Hosseini, P. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium-and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22, 12226–12237 (2014).
    [Crossref] [PubMed]
  21. J. M. Choi, R. K. Lee, and A. Yariv, “Control of critical coupling in a ring resonator–fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillation,” Opt. Lett. 26, 1236–1238 (2001).
    [Crossref]
  22. K. Totsuka and M. Tomita, “Optical microsphere amplification system,” Opt. Lett. 32, 3197–3199 (2007).
    [Crossref] [PubMed]
  23. Y. Dumeige, S. Trebaol, L. Ghisa, T. K. N. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25, 2073–2080 (2008).
    [Crossref]
  24. A. Rasoloniaina, S. Trebaol, V. Huet, E. Le Cren, G. N. Conti, H. Serier-Brault, M. Mortier, Y. Dumeige, and P. Féron, “High-gain wavelength-selective amplification and cavity ring down spectroscopy in a fluoride glass erbium-doped microsphere,” Opt. Lett. 37, 4735–4737 (2012).
    [Crossref] [PubMed]
  25. L. Mescia, P. Bia, M. De Sario, A. Di Tommaso, and F. Prudenzano, “Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator,” Opt. Express 20, 7616–7629 (2012).
    [Crossref] [PubMed]
  26. P. Bia, A. Di Tommaso, and M. De Sario, “Modeling of mid-IR amplifier based on an erbium-doped chalcogenide microsphere,” Int. J. Opt. 2012, 2012 (2012).
    [Crossref]
  27. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
    [Crossref] [PubMed]
  28. F. Monifi, Ş. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode micro-cavity,” Appl. Phys. Lett. 103, 181103 (2013).
    [Crossref]
  29. L. He, Ş. K. Özdemir, Y. F. Xiao, and L. Yang, “Gain-induced evolution of mode splitting spectra in a high-active microresonator,” Quantum Electronics, IEEE Journal of  46, 1626–1633 (2010).
    [Crossref]
  30. L. He, Ş. K. Özdemir, J. Zhu, F. Monifi, H. Yılmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New. J. Phys. 15, 073030 (2013).
    [Crossref]
  31. A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep-UK 4, 4023 (2014).
  32. S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref] [PubMed]
  33. T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity Raman laser on a micro electronic chip,” Opt. Lett. 29, 1224–1226 (2004).
    [Crossref] [PubMed]
  34. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [Crossref] [PubMed]
  35. M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433, 845–848 (2005).
    [Crossref] [PubMed]
  36. A. Sennaroglu, A. Kiraz, M. Dundar, A. Kurt, and A. Demirel, “Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
    [Crossref] [PubMed]
  37. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
    [Crossref]
  38. I. S. Grudinin and L. Maleki, “Efficient Raman laser based on a CaF2 resonator,” J. Opt. Soc. Am. B 25, 594–598 (2008).
    [Crossref]
  39. T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid Raman laser,” IEEE J. Quantum. Electron. 47, 320–326 (2011).
    [Crossref]
  40. B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
    [Crossref] [PubMed]
  41. M. V. Chistiakova and A. M. Armani, “Cascaded Raman microlaser in air and buffer,” Opt. Lett. 37, 4068–4070 (2012).
    [Crossref] [PubMed]
  42. S. Blair and K. Zheng, “Microresonator-enhanced Raman amplification,” J. Opt. Soc. Am. B 23, 1117–1123 (2006).
    [Crossref]
  43. F. De Leonardis and V. M. Passaro, “Modelling of Raman amplification in silicon-on-insulator optical microcavities,” New. J. Phys. 9, 25 (2007).
    [Crossref]
  44. Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
    [Crossref] [PubMed]
  45. B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
    [Crossref] [PubMed]
  46. F. Monifi, Ş. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
    [Crossref]
  47. Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
    [Crossref] [PubMed]
  48. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  49. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [Crossref]
  50. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Electron. Lett. 20, 1835–1837 (1995).
  51. A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
    [Crossref] [PubMed]
  52. J. Zhu, Ş. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  53. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref] [PubMed]
  54. L. He, Y. F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
    [Crossref] [PubMed]
  55. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).
  56. Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
    [Crossref]

2014 (7)

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep-UK 4, 4023 (2014).

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

J. D. Bradley, E. S. Hosseini, P. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium-and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22, 12226–12237 (2014).
[Crossref] [PubMed]

2013 (7)

F. Monifi, Ş. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, F. Monifi, H. Yılmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New. J. Phys. 15, 073030 (2013).
[Crossref]

Y. B. Sheng, J. Liu, S. Y. Zhao, and L. Zhou, “Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system,” Chinese Sci. Bull. 59, 3507–3513 (2013).
[Crossref]

C. Wang, L. Y. He, Y. Zhang, H. Q. Ma, and R. Zhang, “Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system,” Sci. China - Phys. Mech. Astron. 56, 2054–2058 (2013).
[Crossref]

F. Monifi, Ş. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode micro-cavity,” Appl. Phys. Lett. 103, 181103 (2013).
[Crossref]

L. He, Ş. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

2012 (7)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

P. Bia, A. Di Tommaso, and M. De Sario, “Modeling of mid-IR amplifier based on an erbium-doped chalcogenide microsphere,” Int. J. Opt. 2012, 2012 (2012).
[Crossref]

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref] [PubMed]

L. Mescia, P. Bia, M. De Sario, A. Di Tommaso, and F. Prudenzano, “Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator,” Opt. Express 20, 7616–7629 (2012).
[Crossref] [PubMed]

M. V. Chistiakova and A. M. Armani, “Cascaded Raman microlaser in air and buffer,” Opt. Lett. 37, 4068–4070 (2012).
[Crossref] [PubMed]

A. Rasoloniaina, S. Trebaol, V. Huet, E. Le Cren, G. N. Conti, H. Serier-Brault, M. Mortier, Y. Dumeige, and P. Féron, “High-gain wavelength-selective amplification and cavity ring down spectroscopy in a fluoride glass erbium-doped microsphere,” Opt. Lett. 37, 4735–4737 (2012).
[Crossref] [PubMed]

2011 (4)

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid Raman laser,” IEEE J. Quantum. Electron. 47, 320–326 (2011).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[Crossref]

2010 (4)

L. He, Ş. K. Özdemir, Y. F. Xiao, and L. Yang, “Gain-induced evolution of mode splitting spectra in a high-active microresonator,” Quantum Electronics, IEEE Journal of  46, 1626–1633 (2010).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).
[Crossref]

J. Zhu, Ş. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35, 256–258 (2010).
[Crossref] [PubMed]

2009 (2)

L. He, Y. F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (5)

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
[Crossref] [PubMed]

A. Sennaroglu, A. Kiraz, M. Dundar, A. Kurt, and A. Demirel, “Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
[Crossref] [PubMed]

K. Totsuka and M. Tomita, “Optical microsphere amplification system,” Opt. Lett. 32, 3197–3199 (2007).
[Crossref] [PubMed]

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref] [PubMed]

F. De Leonardis and V. M. Passaro, “Modelling of Raman amplification in silicon-on-insulator optical microcavities,” New. J. Phys. 9, 25 (2007).
[Crossref]

2006 (3)

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[Crossref]

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” Selected Topics in Quantum Electronics, IEEE Journal of  12, 143–147 (2006).
[Crossref]

S. Blair and K. Zheng, “Microresonator-enhanced Raman amplification,” J. Opt. Soc. Am. B 23, 1117–1123 (2006).
[Crossref]

2005 (3)

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433, 845–848 (2005).
[Crossref] [PubMed]

2004 (3)

2003 (2)

2002 (1)

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

1995 (1)

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Electron. Lett. 20, 1835–1837 (1995).

Abate, A. R.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Adam, T. N.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Agresti, J. J.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Armani, A. M.

Armani, D.

Atwater, H.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Beck, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Belyanin, A.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433, 845–848 (2005).
[Crossref] [PubMed]

Bender, C. M.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Benson, O.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[Crossref]

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref] [PubMed]

Bia, P.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Blair, S.

Bog, U.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).

Bradley, J. D.

Capasso, F.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433, 845–848 (2005).
[Crossref] [PubMed]

Carmon, T.

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid Raman laser,” IEEE J. Quantum. Electron. 47, 320–326 (2011).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

Chen, D. R.

J. Zhu, Ş. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chistiakova, M. V.

Cho, A. Y.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433, 845–848 (2005).
[Crossref] [PubMed]

Choi, J. M.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Clements, W. R.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Cohen, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Conti, G. N.

Coolbaugh, D.

Cubukcu, E.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433, 845–848 (2005).
[Crossref] [PubMed]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Leonardis, F.

F. De Leonardis and V. M. Passaro, “Modelling of Raman amplification in silicon-on-insulator optical microcavities,” New. J. Phys. 9, 25 (2007).
[Crossref]

De Sario, M.

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Demirel, A.

Di Tommaso, A.

Dumeige, Y.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dundar, M.

Fan, S. H.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Féron, P.

Fridman, M.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref] [PubMed]

Friedlein, J.

F. Monifi, Ş. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Friedmann, C.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Gaeta, A. L.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref] [PubMed]

Ghisa, L.

Gianfreda, M.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Gong, Q.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Götzinger, S.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref] [PubMed]

Grossmann, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Grudinin, I. S.

Guo, L. J.

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” Selected Topics in Quantum Electronics, IEEE Journal of  12, 143–147 (2006).
[Crossref]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Hare, J.

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Electron. Lett. 20, 1835–1837 (1995).

Haroche, S.

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Electron. Lett. 20, 1835–1837 (1995).

He, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, F. Monifi, H. Yılmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New. J. Phys. 15, 073030 (2013).
[Crossref]

L. He, Ş. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

J. Zhu, Ş. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35, 256–258 (2010).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).
[Crossref]

L. He, Ş. K. Özdemir, Y. F. Xiao, and L. Yang, “Gain-induced evolution of mode splitting spectra in a high-active microresonator,” Quantum Electronics, IEEE Journal of  46, 1626–1633 (2010).
[Crossref]

L. He, Y. F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

He, L. Y.

C. Wang, L. Y. He, Y. Zhang, H. Q. Ma, and R. Zhang, “Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system,” Sci. China - Phys. Mech. Astron. 56, 2054–2058 (2013).
[Crossref]

Hosseini, E. S.

Huang, S. H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

Huet, V.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep-UK 4, 4023 (2014).

A. Rasoloniaina, S. Trebaol, V. Huet, E. Le Cren, G. N. Conti, H. Serier-Brault, M. Mortier, Y. Dumeige, and P. Féron, “High-gain wavelength-selective amplification and cavity ring down spectroscopy in a fluoride glass erbium-doped microsphere,” Opt. Lett. 37, 4735–4737 (2012).
[Crossref] [PubMed]

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Kalkman, J.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70, 033803 (2004).
[Crossref]

Kalt, H.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Kim, S.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[Crossref]

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

Kippenberg, T.

T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity Raman laser on a micro electronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref] [PubMed]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Kippenberg, T. J.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70, 033803 (2004).
[Crossref]

Kiraz, A.

KumarSelvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Kurt, A.

Kuzucu, O.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref] [PubMed]

Le Cren, E.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep-UK 4, 4023 (2014).

A. Rasoloniaina, S. Trebaol, V. Huet, E. Le Cren, G. N. Conti, H. Serier-Brault, M. Mortier, Y. Dumeige, and P. Féron, “High-gain wavelength-selective amplification and cavity ring down spectroscopy in a fluoride glass erbium-doped microsphere,” Opt. Lett. 37, 4735–4737 (2012).
[Crossref] [PubMed]

Leake, G.

Lee, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

Lee, R. K.

Lefèvre-Seguin, V.

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Electron. Lett. 20, 1835–1837 (1995).

Lei, F.

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Li, B. B.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Li, L.

J. Zhu, Ş. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, Z.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Liertzer, M.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Lipson, M.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref] [PubMed]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
[Crossref] [PubMed]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Liu, J.

Y. B. Sheng, J. Liu, S. Y. Zhao, and L. Zhou, “Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system,” Chinese Sci. Bull. 59, 3507–3513 (2013).
[Crossref]

Long, G. L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

Lu, T.

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid Raman laser,” IEEE J. Quantum. Electron. 47, 320–326 (2011).
[Crossref]

Luo, L. W.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref] [PubMed]

Ma, H. Q.

C. Wang, L. Y. He, Y. Zhang, H. Q. Ma, and R. Zhang, “Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system,” Sci. China - Phys. Mech. Astron. 56, 2054–2058 (2013).
[Crossref]

Maleki, L.

Mappes, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Mazzei, A.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref] [PubMed]

Menezes, L. D. S.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref] [PubMed]

Mescia, L.

Michely, L.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep-UK 4, 4023 (2014).

Min, B.

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid Raman laser,” IEEE J. Quantum. Electron. 47, 320–326 (2011).
[Crossref]

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70, 033803 (2004).
[Crossref]

Monifi, F.

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

F. Monifi, Ş. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

F. Monifi, Ş. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode micro-cavity,” Appl. Phys. Lett. 103, 181103 (2013).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, F. Monifi, H. Yılmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New. J. Phys. 15, 073030 (2013).
[Crossref]

Mortier, M.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep-UK 4, 4023 (2014).

A. Rasoloniaina, S. Trebaol, V. Huet, E. Le Cren, G. N. Conti, H. Serier-Brault, M. Mortier, Y. Dumeige, and P. Féron, “High-gain wavelength-selective amplification and cavity ring down spectroscopy in a fluoride glass erbium-doped microsphere,” Opt. Lett. 37, 4735–4737 (2012).
[Crossref] [PubMed]

Nguyen, T. K. N.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep-UK 4, 4023 (2014).

Nguyên, T. K. N.

Nori, F.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Okamoto, K.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[Crossref]

Ozdemir, S. K.

L. He, Ş. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

J. Zhu, Ş. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Özdemir, S. K.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

F. Monifi, Ş. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

F. Monifi, Ş. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode micro-cavity,” Appl. Phys. Lett. 103, 181103 (2013).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, F. Monifi, H. Yılmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New. J. Phys. 15, 073030 (2013).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35, 256–258 (2010).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).
[Crossref]

L. He, Ş. K. Özdemir, Y. F. Xiao, and L. Yang, “Gain-induced evolution of mode splitting spectra in a high-active microresonator,” Quantum Electronics, IEEE Journal of  46, 1626–1633 (2010).
[Crossref]

L. He, Y. F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

Paniccia, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Passaro, V. M.

F. De Leonardis and V. M. Passaro, “Modelling of Raman amplification in silicon-on-insulator optical microcavities,” New. J. Phys. 9, 25 (2007).
[Crossref]

Peng, B.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Polman, A.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70, 033803 (2004).
[Crossref]

Prudenzano, F.

Psaltis, D.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Purnawirman, P.

Raday, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

Raimond, J.-M.

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Electron. Lett. 20, 1835–1837 (1995).

Rasoloniaina, A.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep-UK 4, 4023 (2014).

A. Rasoloniaina, S. Trebaol, V. Huet, E. Le Cren, G. N. Conti, H. Serier-Brault, M. Mortier, Y. Dumeige, and P. Féron, “High-gain wavelength-selective amplification and cavity ring down spectroscopy in a fluoride glass erbium-doped microsphere,” Opt. Lett. 37, 4735–4737 (2012).
[Crossref] [PubMed]

Rong, H.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Rotter, S.

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Sandoghdar, V.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref] [PubMed]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Electron. Lett. 20, 1835–1837 (1995).

Scherer, A.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[Crossref]

Sennaroglu, A.

Serier-Brault, H.

Sheng, Y. B.

Y. B. Sheng, J. Liu, S. Y. Zhao, and L. Zhou, “Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system,” Chinese Sci. Bull. 59, 3507–3513 (2013).
[Crossref]

Shi, K.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Sih, V.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

Sivco, D. L.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433, 845–848 (2005).
[Crossref] [PubMed]

Spillane, S.

T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity Raman laser on a micro electronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref] [PubMed]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Spillane, S. M.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

Su, Z.

Tang, S. K.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Tavernier, H.

Tomita, M.

Totsuka, K.

Trebaol, S.

Troccoli, M.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433, 845–848 (2005).
[Crossref] [PubMed]

Vahala, K.

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[Crossref]

T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity Raman laser on a micro electronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

L. Yang and K. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592–594 (2003).
[Crossref] [PubMed]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Vahala, K. J.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70, 033803 (2004).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Vollmer, F.

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

Wang, C.

C. Wang, L. Y. He, Y. Zhang, H. Q. Ma, and R. Zhang, “Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system,” Sci. China - Phys. Mech. Astron. 56, 2054–2058 (2013).
[Crossref]

Ward, J.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[Crossref]

Watts, M. R.

Weiss, D. S.

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Electron. Lett. 20, 1835–1837 (1995).

Weitz, D. A.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Wen, Y. H.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref] [PubMed]

Whitesides, G. M.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Wienhold, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Xiao, Y. F.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, Y. F. Xiao, and L. Yang, “Gain-induced evolution of mode splitting spectra in a high-active microresonator,” Quantum Electronics, IEEE Journal of  46, 1626–1633 (2010).
[Crossref]

J. Zhu, Ş. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

L. He, Y. F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

Xu, Q.

Xu, S.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

Yang, J.

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” Selected Topics in Quantum Electronics, IEEE Journal of  12, 143–147 (2006).
[Crossref]

Yang, L.

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

F. Monifi, Ş. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

F. Monifi, Ş. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode micro-cavity,” Appl. Phys. Lett. 103, 181103 (2013).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, F. Monifi, H. Yılmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New. J. Phys. 15, 073030 (2013).
[Crossref]

L. He, Ş. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid Raman laser,” IEEE J. Quantum. Electron. 47, 320–326 (2011).
[Crossref]

J. Zhu, Ş. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35, 256–258 (2010).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, Y. F. Xiao, and L. Yang, “Gain-induced evolution of mode splitting spectra in a high-active microresonator,” Quantum Electronics, IEEE Journal of  46, 1626–1633 (2010).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).
[Crossref]

L. He, Y. F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70, 033803 (2004).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

L. Yang and K. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592–594 (2003).
[Crossref] [PubMed]

Yang, X.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

Yariv, A.

Yilmaz, H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, F. Monifi, H. Yılmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New. J. Phys. 15, 073030 (2013).
[Crossref]

Yu, X. C.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Zhang, R.

C. Wang, L. Y. He, Y. Zhang, H. Q. Ma, and R. Zhang, “Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system,” Sci. China - Phys. Mech. Astron. 56, 2054–2058 (2013).
[Crossref]

Zhang, Y.

C. Wang, L. Y. He, Y. Zhang, H. Q. Ma, and R. Zhang, “Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system,” Sci. China - Phys. Mech. Astron. 56, 2054–2058 (2013).
[Crossref]

Zhao, S. Y.

Y. B. Sheng, J. Liu, S. Y. Zhao, and L. Zhou, “Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system,” Chinese Sci. Bull. 59, 3507–3513 (2013).
[Crossref]

Zheng, K.

Zhou, L.

Y. B. Sheng, J. Liu, S. Y. Zhao, and L. Zhou, “Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system,” Chinese Sci. Bull. 59, 3507–3513 (2013).
[Crossref]

Zhu, J.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, F. Monifi, H. Yılmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New. J. Phys. 15, 073030 (2013).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

J. Zhu, Ş. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35, 256–258 (2010).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).
[Crossref]

L. He, Y. F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

Zumofen, G.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

B. Min, S. Kim, K. Okamoto, L. Yang, A. Scherer, H. Atwater, and K. Vahala, “Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers,” Appl. Phys. Lett. 89, 191124 (2006).
[Crossref]

F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, and L. Yang, “Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators,” Appl. Phys. Lett. 105, 101112 (2014).
[Crossref]

F. Monifi, Ş. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode micro-cavity,” Appl. Phys. Lett. 103, 181103 (2013).
[Crossref]

Chinese Sci. Bull. (1)

Y. B. Sheng, J. Liu, S. Y. Zhao, and L. Zhou, “Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system,” Chinese Sci. Bull. 59, 3507–3513 (2013).
[Crossref]

Electron. Lett. (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Electron. Lett. 20, 1835–1837 (1995).

IEEE J. Quantum. Electron. (1)

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid Raman laser,” IEEE J. Quantum. Electron. 47, 320–326 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Monifi, Ş. K. Özdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Int. J. Opt. (1)

P. Bia, A. Di Tommaso, and M. De Sario, “Modeling of mid-IR amplifier based on an erbium-doped chalcogenide microsphere,” Int. J. Opt. 2012, 2012 (2012).
[Crossref]

J. Opt. Soc. Am. B (3)

Lab Chip (1)

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Laser Photon. Rev. (3)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

L. He, Ş. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[Crossref]

Light Sci. Appl. (1)

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Nanophotonics (1)

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

Nat. Nanotechnol. (1)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008).
[Crossref]

J. Zhu, Ş. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nat. Phys. (1)

B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Nature (4)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433, 845–848 (2005).
[Crossref] [PubMed]

New. J. Phys. (2)

L. He, Ş. K. Özdemir, J. Zhu, F. Monifi, H. Yılmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New. J. Phys. 15, 073030 (2013).
[Crossref]

F. De Leonardis and V. M. Passaro, “Modelling of Raman amplification in silicon-on-insulator optical microcavities,” New. J. Phys. 9, 25 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

L. Yang and K. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592–594 (2003).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35, 256–258 (2010).
[Crossref] [PubMed]

J. M. Choi, R. K. Lee, and A. Yariv, “Control of critical coupling in a ring resonator–fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillation,” Opt. Lett. 26, 1236–1238 (2001).
[Crossref]

K. Totsuka and M. Tomita, “Optical microsphere amplification system,” Opt. Lett. 32, 3197–3199 (2007).
[Crossref] [PubMed]

A. Rasoloniaina, S. Trebaol, V. Huet, E. Le Cren, G. N. Conti, H. Serier-Brault, M. Mortier, Y. Dumeige, and P. Féron, “High-gain wavelength-selective amplification and cavity ring down spectroscopy in a fluoride glass erbium-doped microsphere,” Opt. Lett. 37, 4735–4737 (2012).
[Crossref] [PubMed]

A. Sennaroglu, A. Kiraz, M. Dundar, A. Kurt, and A. Demirel, “Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
[Crossref] [PubMed]

T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity Raman laser on a micro electronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref] [PubMed]

M. V. Chistiakova and A. M. Armani, “Cascaded Raman microlaser in air and buffer,” Opt. Lett. 37, 4068–4070 (2012).
[Crossref] [PubMed]

Phys. Rev. A (3)

Ş. K. Özdemir, J. Zhu, L. He, and L. Yang, “Estimation of purcell factor from mode-splitting spectra in an optical microcavity,” Phys. Rev. A 83, 033817 (2011).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).
[Crossref]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70, 033803 (2004).
[Crossref]

Phys. Rev. Lett. (2)

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref] [PubMed]

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L. W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (2)

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014).
[Crossref] [PubMed]

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111, 14657–14662 (2014).
[Crossref] [PubMed]

Quantum Electronics, IEEE Journal (1)

L. He, Ş. K. Özdemir, Y. F. Xiao, and L. Yang, “Gain-induced evolution of mode splitting spectra in a high-active microresonator,” Quantum Electronics, IEEE Journal of  46, 1626–1633 (2010).
[Crossref]

Sci. China - Phys. Mech. Astron. (1)

C. Wang, L. Y. He, Y. Zhang, H. Q. Ma, and R. Zhang, “Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system,” Sci. China - Phys. Mech. Astron. 56, 2054–2058 (2013).
[Crossref]

Sci. Rep-UK (1)

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep-UK 4, 4023 (2014).

Science (1)

B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Selected Topics in Quantum Electronics, IEEE Journal (1)

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” Selected Topics in Quantum Electronics, IEEE Journal of  12, 143–147 (2006).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup. (a) Schematic illustration of the experimental setup. A pump laser excites the Raman gain to compensate the losses in the spectral band of a probe laser that is used to probe and monitor the resonances. A fiber-taper is used to couple the pump and probe light into and out of the silica microtoroid. The transmitted pump and probe lights are separated using a wavelength-division-multiplexer (WDM), and then detected with photodiodes (PD) connected to an oscilloscope (OSC). Laser power is controlled by variable optical attenuators (VOA), and polarization state is changed by fiber polarization controllers (PC). (b) Energy level diagrams describing Raman scattering. (c) Normalized Raman gain spectra of bulk silica [48].
Fig. 2
Fig. 2 Theoretical transmission spectra showing the effect of Raman gain. (a, b, c) are transmission spectra without mode splitting. Initial coupling conditions (i.e., before the Raman gain is introduced) are set as: (a) under coupling, (b) critical coupling, and (c) over-coupling. The values of the Raman gain used in the calculations are given in the plots. (d, e, f) are transmission spectra with scatterer-induced mode splitting, with the same ξ and Raman gain κex corresponding to (a, b, c).
Fig. 3
Fig. 3 Experimentally obtained transmission spectra at various values of Raman gain for different initial coupling conditions. Blue curves are obtained in the experiments and the red curves are the fitting curves using Eq. (5). Pump power is measured at the fiber-taper input port. Raman gain ξ of fitting curves is marked on each plot. When the pump is OFF (no Raman gain), the parameters extracted from the deep under-coupling regime are κ0 = 1.97MHz, 2g = 2.47κ0 and ΓRκ0.
Fig. 4
Fig. 4 Mode splitting spectra and the curve fitting values with increasing pump power. (a), (c) and (e) are splitting spectra in different coupling (κex = 0.28κ0, κex = 0.49κ0 and κex = 1.05κ0), blue curves are obtained in experiments and the red curves are the fitting. (b), (d) and (f) are curve fitting parameters of κeff (red circles— linear fitted with red line), κex (blue squares— linear fitted with blue line), and minimum transmission of two splitting modes (green diamonds for one and black hexagonal for the other, with corresponding dashed lines for visual guides). The maximum injected pump power is 1.57 mW, and the injected probe power is kept at 21.0 µW, measured at the fiber-taper input port.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d a d t = ( i ω c + κ e f f + κ e x 2 ) a κ e x a i n .
T ( Δ ω ) = Δ ω 2 + ( κ e f f κ e x 2 ) 2 Δ ω 2 + ( κ e f f + κ e x 2 ) 2
d a C W d t = ( i ω 0 + i g + Γ R + κ e f f + κ e x 2 ) a C W ( i g + Γ R 2 ) a C C W κ e x a C W i n .
d a C C W d t = ( i ω 0 + i g + Γ R + κ e f f + κ e x 2 ) a C C W ( i g + Γ R 2 ) a C W .
T = | 1 κ e x β β 2 ( i g + Γ R / 2 ) 2 | 2 .

Metrics