Abstract

We assess numerically the performance of single-carrier digital backpropagation (SC-DBP) and maximum-likelihood sequence detection (MLSD) for DP-QPSK and DP-16QAM superchannel transmission over dispersion uncompensated links for three different cases of spectral shaping: optical pre-filtering of RZ and NRZ spectra, and digital Nyquist filtering. We investigate the limits for carrier proximity of each spectral shaping technique and the correspondent performance behavior of each algorithm, for both modulation formats. For superchannels with carrier spacing close to the Nyquist limit, it is shown that the maximum performance improvement of 1.0 dB in Q2-factor is provided by those algorithms. However, such gain can be highly reduced when the order of the modulation format increases.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission

Carsten Behrens, Sergejs Makovejs, Robert I. Killey, Seb J. Savory, Ming Chen, and Polina Bayvel
Opt. Express 19(14) 12879-12884 (2011)

Transmission of 1.936 Tb/s (11 × 176 Gb/s) DP-16QAM superchannel signals over 640 km SSMF with EDFA only and 300 GHz WSS channel

Jianqiang Li, Magnus Karlsson, Peter A. Andrekson, and Kun Xu
Opt. Express 20(26) B223-B231 (2012)

On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission

Gabriele Liga, Tianhua Xu, Alex Alvarado, Robert I. Killey, and Polina Bayvel
Opt. Express 22(24) 30053-30062 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cai, Y. Sun, H. Zhang, H. G. Batshon, M. V. Mazurczyk, O. V. Sinkin, D. G. Foursa, and A. Pilipetskii, “49.3 Tb/s transmission over 9100 km using C+L EDFA and 54 Tb/s transmission over 9150 km using hybrid-Raman EDFA,” J. Lightwave Technol. 33(13), 2724–2734 (2015).
    [Crossref]
  2. A. Ghazisaeidi, L. Schmalen, I. F. de Jauregui, P. Tran, C. Simonneau, P. Brindel, and G. Charlet, “52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC,” Tech. Digest of European Conference on Optical Communication, paper PD. 3.4 (2014).
  3. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  4. J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters,” J. Lightwave Technol. 30(23), 3679–3686 (2012).
    [Crossref]
  5. E. Porto da Silva, L. Carvalho, C. Franciscangelis, J. Diniz, J. Oliveira, and A. Bordonalli, “Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid,” in Tech. Digest of Optical Fiber Communication Conference, paper JTh2A.39 (2013).
  6. L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).
  7. L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. Parahyba, E. P. da Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” in Tech. Digest of Optical Fiber Communication Conference, paper M3C.3 (2014).
  8. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  9. Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol. 29(17), 2570–2576 (2011).
    [Crossref]
  10. D. Marsella, M. Secondini, and E. Forestieri, “Maximum likelihood sequence detection for mitigating nonlinear effects,” J. Lightwave Technol. 32(5), 908–916 (2014).
    [Crossref]
  11. T. Oyama, T. Hoshida, H. Nakashima, C. Ohshima, Z. Tao, and J. C. Rasmussen, “Impact of pulse shaping and transceiver electrical bandwidths on nonlinear compensated transmission,” in Tech. Digest of Optical Fiber Communication Conference, paper OTh3C.2 (2013).
  12. G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral-efficiency terabit/s superchannels,” in Tech. Digest of Optical Fiber Communication Conference, paper W2A.23 (2014).
  13. E. P. da Silva, K. J. Larsen, and D. Zibar, “Mitigation of linear and nonlinear impairments in spectrally efficient superchannels,” in Tech. Digest of Signal Processing in Photonic Communications, paper SpS2C.3 (2015).
  14. E. Ip and J. M. Kahn, “Power spectra of return-to-zero optical signals,” J. Lightwave Technol. 24(3), 1610–1618 (2006).
    [Crossref]
  15. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  16. R. Borkowski, D. Zibar, and I. T. Monroy, “Anatomy of a digital coherent receiver,” IEICE Trans. Commun. 97(8), 1528–1536 (2014).
    [Crossref]
  17. M. Shtaif, R. Dar, A. Mecozzi, and M. Feder, “Nonlinear interference noise in WDM systems and approaches for its cancellation,” in Tech. Digest of European Conference on Optical Communication, paper We.1.3.1 (2014).
  18. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation,” J. Lightwave Technol. 33(5), 1044–1053 (2015)
    [Crossref]
  19. P. Poggiolini, G. Bosco, and A. Carena, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol. 32(4), 694–721 (2014).
    [Crossref]
  20. A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightwave Technol. 30(12), 2011–2024 (2012)
    [Crossref]
  21. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
    [Crossref] [PubMed]
  22. C. Lin, S. Chandrasekhar, and P. J. Winzer, “Experimental study of the limits of digital nonlinearity compensation in DWDM systems,” in Tech. Digest of Optical Fiber Communication Conference, paper Th4D.4 (2015).
  23. J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol. 30(4), 651–657 (2012).
    [Crossref]
  24. M. Secondini, T. Foggi, F. Fresi, G. Meloni, F. Cavaliere, G. Colavolpe, E. Forestieri, L. Pot, R. Sabella, and G. Prati, “Optical time–frequency packing: principles, design, implementation, and experimental demonstration,” J. Lightwave Technol. 33(17), 3558–3570 (2015).
    [Crossref]

2015 (3)

2014 (3)

2013 (1)

2012 (3)

2011 (2)

2008 (1)

2006 (1)

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Batshon, H. G.

Bayvel, P.

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral-efficiency terabit/s superchannels,” in Tech. Digest of Optical Fiber Communication Conference, paper W2A.23 (2014).

Bergano, N. S.

Bordonalli, A.

E. Porto da Silva, L. Carvalho, C. Franciscangelis, J. Diniz, J. Oliveira, and A. Bordonalli, “Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid,” in Tech. Digest of Optical Fiber Communication Conference, paper JTh2A.39 (2013).

Bordonalli, A. C.

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

Borkowski, R.

R. Borkowski, D. Zibar, and I. T. Monroy, “Anatomy of a digital coherent receiver,” IEICE Trans. Commun. 97(8), 1528–1536 (2014).
[Crossref]

Bosco, G.

Brindel, P.

A. Ghazisaeidi, L. Schmalen, I. F. de Jauregui, P. Tran, C. Simonneau, P. Brindel, and G. Charlet, “52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC,” Tech. Digest of European Conference on Optical Communication, paper PD. 3.4 (2014).

Cai, J.-X.

Carena, A.

Carvalho, L.

E. Porto da Silva, L. Carvalho, C. Franciscangelis, J. Diniz, J. Oliveira, and A. Bordonalli, “Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid,” in Tech. Digest of Optical Fiber Communication Conference, paper JTh2A.39 (2013).

Carvalho, L. H. H.

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. Parahyba, E. P. da Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” in Tech. Digest of Optical Fiber Communication Conference, paper M3C.3 (2014).

Cavaliere, F.

Chandrasekhar, S.

C. Lin, S. Chandrasekhar, and P. J. Winzer, “Experimental study of the limits of digital nonlinearity compensation in DWDM systems,” in Tech. Digest of Optical Fiber Communication Conference, paper Th4D.4 (2015).

Charlet, G.

A. Ghazisaeidi, L. Schmalen, I. F. de Jauregui, P. Tran, C. Simonneau, P. Brindel, and G. Charlet, “52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC,” Tech. Digest of European Conference on Optical Communication, paper PD. 3.4 (2014).

Colavolpe, G.

Curri, V.

da Silva, E. P.

E. P. da Silva, K. J. Larsen, and D. Zibar, “Mitigation of linear and nonlinear impairments in spectrally efficient superchannels,” in Tech. Digest of Signal Processing in Photonic Communications, paper SpS2C.3 (2015).

L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. Parahyba, E. P. da Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” in Tech. Digest of Optical Fiber Communication Conference, paper M3C.3 (2014).

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

Dar, R.

Davidson, C. R.

de Jauregui, I. F.

A. Ghazisaeidi, L. Schmalen, I. F. de Jauregui, P. Tran, C. Simonneau, P. Brindel, and G. Charlet, “52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC,” Tech. Digest of European Conference on Optical Communication, paper PD. 3.4 (2014).

Diniz, J.

E. Porto da Silva, L. Carvalho, C. Franciscangelis, J. Diniz, J. Oliveira, and A. Bordonalli, “Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid,” in Tech. Digest of Optical Fiber Communication Conference, paper JTh2A.39 (2013).

Dou, L.

Essiambre, R.-J.

Feder, M.

Floridia, C.

L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. Parahyba, E. P. da Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” in Tech. Digest of Optical Fiber Communication Conference, paper M3C.3 (2014).

Foggi, T.

Forestieri, E.

Forghieri, F.

Foursa, D. G.

Franciscangelis, C.

L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. Parahyba, E. P. da Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” in Tech. Digest of Optical Fiber Communication Conference, paper M3C.3 (2014).

E. Porto da Silva, L. Carvalho, C. Franciscangelis, J. Diniz, J. Oliveira, and A. Bordonalli, “Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid,” in Tech. Digest of Optical Fiber Communication Conference, paper JTh2A.39 (2013).

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

Fresi, F.

Galdino, L.

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral-efficiency terabit/s superchannels,” in Tech. Digest of Optical Fiber Communication Conference, paper W2A.23 (2014).

Ghazisaeidi, A.

A. Ghazisaeidi, L. Schmalen, I. F. de Jauregui, P. Tran, C. Simonneau, P. Brindel, and G. Charlet, “52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC,” Tech. Digest of European Conference on Optical Communication, paper PD. 3.4 (2014).

Gonzalez, N. G.

L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. Parahyba, E. P. da Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” in Tech. Digest of Optical Fiber Communication Conference, paper M3C.3 (2014).

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

Hoshida, T.

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol. 29(17), 2570–2576 (2011).
[Crossref]

T. Oyama, T. Hoshida, H. Nakashima, C. Ohshima, Z. Tao, and J. C. Rasmussen, “Impact of pulse shaping and transceiver electrical bandwidths on nonlinear compensated transmission,” in Tech. Digest of Optical Fiber Communication Conference, paper OTh3C.2 (2013).

Ip, E.

Kahn, J. M.

Killey, R.

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral-efficiency terabit/s superchannels,” in Tech. Digest of Optical Fiber Communication Conference, paper W2A.23 (2014).

Larsen, K. J.

E. P. da Silva, K. J. Larsen, and D. Zibar, “Mitigation of linear and nonlinear impairments in spectrally efficient superchannels,” in Tech. Digest of Signal Processing in Photonic Communications, paper SpS2C.3 (2015).

Li, L.

Liga, G.

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral-efficiency terabit/s superchannels,” in Tech. Digest of Optical Fiber Communication Conference, paper W2A.23 (2014).

Lin, C.

C. Lin, S. Chandrasekhar, and P. J. Winzer, “Experimental study of the limits of digital nonlinearity compensation in DWDM systems,” in Tech. Digest of Optical Fiber Communication Conference, paper Th4D.4 (2015).

Linakis, S. H.

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

Lucero, A.

Marsella, D.

Mazurczyk, M. V.

Mecozzi, A.

Meloni, G.

Mohs, G.

Monroy, I. T.

R. Borkowski, D. Zibar, and I. T. Monroy, “Anatomy of a digital coherent receiver,” IEICE Trans. Commun. 97(8), 1528–1536 (2014).
[Crossref]

Nakashima, H.

T. Oyama, T. Hoshida, H. Nakashima, C. Ohshima, Z. Tao, and J. C. Rasmussen, “Impact of pulse shaping and transceiver electrical bandwidths on nonlinear compensated transmission,” in Tech. Digest of Optical Fiber Communication Conference, paper OTh3C.2 (2013).

Ohshima, C.

T. Oyama, T. Hoshida, H. Nakashima, C. Ohshima, Z. Tao, and J. C. Rasmussen, “Impact of pulse shaping and transceiver electrical bandwidths on nonlinear compensated transmission,” in Tech. Digest of Optical Fiber Communication Conference, paper OTh3C.2 (2013).

Oliveira, J.

L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. Parahyba, E. P. da Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” in Tech. Digest of Optical Fiber Communication Conference, paper M3C.3 (2014).

E. Porto da Silva, L. Carvalho, C. Franciscangelis, J. Diniz, J. Oliveira, and A. Bordonalli, “Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid,” in Tech. Digest of Optical Fiber Communication Conference, paper JTh2A.39 (2013).

Oliveira, J. C. R. F.

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

Oliveira, J. R. F.

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

Oyama, T.

T. Oyama, T. Hoshida, H. Nakashima, C. Ohshima, Z. Tao, and J. C. Rasmussen, “Impact of pulse shaping and transceiver electrical bandwidths on nonlinear compensated transmission,” in Tech. Digest of Optical Fiber Communication Conference, paper OTh3C.2 (2013).

Paiva, G. E. R.

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

Pan, Z.

Parahyba, V.

L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. Parahyba, E. P. da Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” in Tech. Digest of Optical Fiber Communication Conference, paper M3C.3 (2014).

Parahyba, V. E.

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

Patterson, W. W.

Pilipetskii, A.

Pilipetskii, A. N.

Poggiolini, P.

Porto da Silva, E.

E. Porto da Silva, L. Carvalho, C. Franciscangelis, J. Diniz, J. Oliveira, and A. Bordonalli, “Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid,” in Tech. Digest of Optical Fiber Communication Conference, paper JTh2A.39 (2013).

Pot, L.

Prati, G.

Rasmussen, J. C.

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol. 29(17), 2570–2576 (2011).
[Crossref]

T. Oyama, T. Hoshida, H. Nakashima, C. Ohshima, Z. Tao, and J. C. Rasmussen, “Impact of pulse shaping and transceiver electrical bandwidths on nonlinear compensated transmission,” in Tech. Digest of Optical Fiber Communication Conference, paper OTh3C.2 (2013).

Sabella, R.

Schmalen, L.

A. Ghazisaeidi, L. Schmalen, I. F. de Jauregui, P. Tran, C. Simonneau, P. Brindel, and G. Charlet, “52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC,” Tech. Digest of European Conference on Optical Communication, paper PD. 3.4 (2014).

Secondini, M.

Shtaif, M.

Simonneau, C.

A. Ghazisaeidi, L. Schmalen, I. F. de Jauregui, P. Tran, C. Simonneau, P. Brindel, and G. Charlet, “52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC,” Tech. Digest of European Conference on Optical Communication, paper PD. 3.4 (2014).

Sinkin, O. V.

Sun, Y.

Tao, Z.

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol. 29(17), 2570–2576 (2011).
[Crossref]

T. Oyama, T. Hoshida, H. Nakashima, C. Ohshima, Z. Tao, and J. C. Rasmussen, “Impact of pulse shaping and transceiver electrical bandwidths on nonlinear compensated transmission,” in Tech. Digest of Optical Fiber Communication Conference, paper OTh3C.2 (2013).

Tran, P.

A. Ghazisaeidi, L. Schmalen, I. F. de Jauregui, P. Tran, C. Simonneau, P. Brindel, and G. Charlet, “52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC,” Tech. Digest of European Conference on Optical Communication, paper PD. 3.4 (2014).

Wang, J.

Winzer, P. J.

C. Lin, S. Chandrasekhar, and P. J. Winzer, “Experimental study of the limits of digital nonlinearity compensation in DWDM systems,” in Tech. Digest of Optical Fiber Communication Conference, paper Th4D.4 (2015).

Xie, C.

Xu, T.

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral-efficiency terabit/s superchannels,” in Tech. Digest of Optical Fiber Communication Conference, paper W2A.23 (2014).

Yan, W.

Zhang, H.

Zibar, D.

R. Borkowski, D. Zibar, and I. T. Monroy, “Anatomy of a digital coherent receiver,” IEICE Trans. Commun. 97(8), 1528–1536 (2014).
[Crossref]

E. P. da Silva, K. J. Larsen, and D. Zibar, “Mitigation of linear and nonlinear impairments in spectrally efficient superchannels,” in Tech. Digest of Signal Processing in Photonic Communications, paper SpS2C.3 (2015).

IEICE Trans. Commun. (1)

R. Borkowski, D. Zibar, and I. T. Monroy, “Anatomy of a digital coherent receiver,” IEICE Trans. Commun. 97(8), 1528–1536 (2014).
[Crossref]

J. Lightwave Technol. (12)

J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol. 30(4), 651–657 (2012).
[Crossref]

M. Secondini, T. Foggi, F. Fresi, G. Meloni, F. Cavaliere, G. Colavolpe, E. Forestieri, L. Pot, R. Sabella, and G. Prati, “Optical time–frequency packing: principles, design, implementation, and experimental demonstration,” J. Lightwave Technol. 33(17), 3558–3570 (2015).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters,” J. Lightwave Technol. 30(23), 3679–3686 (2012).
[Crossref]

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
[Crossref]

Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol. 29(17), 2570–2576 (2011).
[Crossref]

D. Marsella, M. Secondini, and E. Forestieri, “Maximum likelihood sequence detection for mitigating nonlinear effects,” J. Lightwave Technol. 32(5), 908–916 (2014).
[Crossref]

J.-X. Cai, Y. Sun, H. Zhang, H. G. Batshon, M. V. Mazurczyk, O. V. Sinkin, D. G. Foursa, and A. Pilipetskii, “49.3 Tb/s transmission over 9100 km using C+L EDFA and 54 Tb/s transmission over 9150 km using hybrid-Raman EDFA,” J. Lightwave Technol. 33(13), 2724–2734 (2015).
[Crossref]

E. Ip and J. M. Kahn, “Power spectra of return-to-zero optical signals,” J. Lightwave Technol. 24(3), 1610–1618 (2006).
[Crossref]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation,” J. Lightwave Technol. 33(5), 1044–1053 (2015)
[Crossref]

P. Poggiolini, G. Bosco, and A. Carena, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol. 32(4), 694–721 (2014).
[Crossref]

A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightwave Technol. 30(12), 2011–2024 (2012)
[Crossref]

Opt. Express (1)

Other (10)

C. Lin, S. Chandrasekhar, and P. J. Winzer, “Experimental study of the limits of digital nonlinearity compensation in DWDM systems,” in Tech. Digest of Optical Fiber Communication Conference, paper Th4D.4 (2015).

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

A. Ghazisaeidi, L. Schmalen, I. F. de Jauregui, P. Tran, C. Simonneau, P. Brindel, and G. Charlet, “52.9 Tb/s transmission over transoceanic distances using adaptive multi-rate FEC,” Tech. Digest of European Conference on Optical Communication, paper PD. 3.4 (2014).

T. Oyama, T. Hoshida, H. Nakashima, C. Ohshima, Z. Tao, and J. C. Rasmussen, “Impact of pulse shaping and transceiver electrical bandwidths on nonlinear compensated transmission,” in Tech. Digest of Optical Fiber Communication Conference, paper OTh3C.2 (2013).

G. Liga, T. Xu, L. Galdino, R. Killey, and P. Bayvel, “Digital back-propagation for high spectral-efficiency terabit/s superchannels,” in Tech. Digest of Optical Fiber Communication Conference, paper W2A.23 (2014).

E. P. da Silva, K. J. Larsen, and D. Zibar, “Mitigation of linear and nonlinear impairments in spectrally efficient superchannels,” in Tech. Digest of Signal Processing in Photonic Communications, paper SpS2C.3 (2015).

E. Porto da Silva, L. Carvalho, C. Franciscangelis, J. Diniz, J. Oliveira, and A. Bordonalli, “Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid,” in Tech. Digest of Optical Fiber Communication Conference, paper JTh2A.39 (2013).

L. H. H. Carvalho, C. Franciscangelis, G. E. R. Paiva, V. E. Parahyba, A. C. Bordonalli, J. R. F. Oliveira, E. P. da Silva, J. C. R. F. Oliveira, S. H. Linakis, and N. G. Gonzalez, “Transmission of a DAC-free 1.12-Tb/s superchannel with 6-b/s/Hz over 1000 km with hybrid Raman-EDFA amplification and 10 cascaded 175-GHz flexible ROADMs,” in Tech. Digest of European Conference on Optical Communication, paper” P.4.4 (2013).

L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. Parahyba, E. P. da Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” in Tech. Digest of Optical Fiber Communication Conference, paper M3C.3 (2014).

M. Shtaif, R. Dar, A. Mecozzi, and M. Feder, “Nonlinear interference noise in WDM systems and approaches for its cancellation,” in Tech. Digest of European Conference on Optical Communication, paper We.1.3.1 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the simulation setup. (a) Block diagram of the transmitter, fiber channel and coherent receiver. (b) Spectra used for comparison: (b.1) PF-NRZ, (b.2) PF-RZ 50%, (b.3) RC (roll-off = 0.01). (c) Modulated carriers’ spectrum (RC pulse shaping).
Fig. 2
Fig. 2 Q2-factor improvement after SC-DBP as function of carrier spacing and fiber input power for the DP-QPSK superchannel after 3600 km transmission.
Fig. 3
Fig. 3 Q2-factor improvement of MLSD compared with SbS decisions as function of fiber input power per carrier with 32.5 GHz carrier spacing for the DP-QPSK superchannel after 3600 km transmission.
Fig. 4
Fig. 4 Q2-factor as function of fiber input power per carrier for the 32.5 GHz carrier spacing configuration for the DP-QPSK superchannel after 3600 km transmission.
Fig. 5
Fig. 5 Q2-factor improvement of SC-DBP as function of carrier spacing and fiber input power for the DP-16QAM superchannel after 800 km transmission.
Fig. 6
Fig. 6 Maximum Q2-factor as function of carrier spacing configuration for the DP-16QAM super-channel after 800 km transmission.

Metrics