Abstract

In this paper, we proposed a time grating system to achieve spike train of uneven duration or delay (STUD) pulses, and theoretically study their features under various modulation conditions. This time grating scheme, which is a temporal analogy of spatial grating, introduces great degree of freedom for controlling the output pulse characteristics (pulse width, repetition rate, pulse shape, etc.) through simply tuning the electronics elements and the programmable phase modulation function. The narrowest pulse width is highly determined by the modulation parameters and the branch number N, and the numerically obtained value is around tens of femtoseconds in the current case. When super-Gaussian pulses are modulated with an optimized and modified trapezoidal function, the pulse rising/falling edge can be greatly compressed to form a clean nearly-square wave (with edges less than 10 fs). STUD pulses generated with this time grating system have high-degree controllability and are very beneficial for suppressing parametric instabilities in laser driven inertial confinement fusion.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-energy low-temporal-coherence instantaneous broadband pulse system

Yong Cui, Yanqi Gao, Daxing Rao, Dong Liu, Fujian Li, Lailin Ji, Haitao Shi, Jiani Liu, Xiaohui Zhao, Wei Feng, Lan Xia, Jia Liu, Xiaoli Li, Tao Wang, Weixin Ma, and Zhan Sui
Opt. Lett. 44(11) 2859-2862 (2019)

Phase-shifted Brillouin dynamic gratings using single pump phase-modulation: proof of concept

Yongkang Dong, Dengwang Zhou, Lei Teng, Pengbai Xu, Taofei Jiang, Hongying Zhang, Zhiwei Lu, Liang Chen, and Xiaoyi Bao
Opt. Express 24(10) 11218-11231 (2016)

10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser

W. W. Tang, M. P. Fok, and Chester Shu
Opt. Express 14(6) 2158-2163 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).
    [Crossref]
  2. P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broadbandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76(4), 2027–2035 (1994).
    [Crossref]
  3. Z. Zhe-Qiang and B. Zhang, “Beam smoothing characteristics of multi-central frequency and multi-color smoothing by spectral dispersion,” Appl. Opt. 53(10), 2020–2025 (2014).
    [Crossref] [PubMed]
  4. K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91(1-2), 9–12 (1992).
    [Crossref]
  5. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
    [Crossref]
  6. C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47(10), 1465–1469 (2008).
    [Crossref] [PubMed]
  7. B. Afeyan, BAPS (2009) DPP.T05.7. http://meetings.aps.org/link/BAPS.2009.DPP.TO5.7 .
  8. B. Afeyan and S. Huller, “Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE,” EPJ Web of Conference 59, 05009 (2013).
    [Crossref]
  9. B. Afeyan and S. Huller, “Simulations of drastically reduced SBS with laser pulses composed of a Spike Trains of Uneven Duration and Delay (STUD pulses),” EPJ Web of Conference 59, 05010 (2013).
  10. G. Magyar, “Ultrashort laser pulses and their uses,” Nature 218(5136), 16–19 (1968).
    [Crossref]
  11. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  12. T. Khayim, M. Yamauchi, D. S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
    [Crossref]
  13. J. van Howe, J. H. Lee, and C. Xu, “Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking,” Opt. Lett. 32(11), 1408–1410 (2007).
    [Crossref] [PubMed]
  14. Y. Dai and C. Xu, “Generation of high repetition rate femtosecond pulses from a CW laser by a time-lens loop,” Opt. Express 17(8), 6584–6590 (2009).
    [Crossref] [PubMed]
  15. S. Wang, J. Zheng, and J. Xu, “Phase-modulation-combination system for the generation of arbitrarily shaped repetition rate pulses,” Chin. Opt. Lett. 11(3), 030603 (2013).
    [Crossref]
  16. J. Zheng, S. Wang, and J. Xu, “Characteristics and dispersion of time grating,” J. Opt. Soc. Am. B 30(3), 723–729 (2013).
    [Crossref]
  17. J. Zheng, S. Wang, and J. Xu, “Time-grating for the generation of STUD pulse trains,” Chin. Phys. Lett. 30(4), 044204 (2013).
    [Crossref]

2014 (1)

2013 (3)

2009 (1)

2008 (1)

2007 (1)

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

1999 (1)

T. Khayim, M. Yamauchi, D. S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

1994 (1)

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broadbandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76(4), 2027–2035 (1994).
[Crossref]

1992 (1)

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91(1-2), 9–12 (1992).
[Crossref]

1989 (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).
[Crossref]

1984 (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

1968 (1)

G. Magyar, “Ultrashort laser pulses and their uses,” Nature 218(5136), 16–19 (1968).
[Crossref]

Arinaga, S.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Cotton, C. T.

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broadbandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76(4), 2027–2035 (1994).
[Crossref]

Craxton, R. S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).
[Crossref]

Dai, Y.

Jitsuno, T.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91(1-2), 9–12 (1992).
[Crossref]

Kanabe, T.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91(1-2), 9–12 (1992).
[Crossref]

Kato, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Kelly, J. H.

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broadbandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76(4), 2027–2035 (1994).
[Crossref]

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).
[Crossref]

Khayim, T.

T. Khayim, M. Yamauchi, D. S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

Kim, D. S.

T. Khayim, M. Yamauchi, D. S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

Kitagawa, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Kobayashi, T.

T. Khayim, M. Yamauchi, D. S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

Lee, J. H.

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).
[Crossref]

Ma, P.

Magyar, G.

G. Magyar, “Ultrashort laser pulses and their uses,” Nature 218(5136), 16–19 (1968).
[Crossref]

McKenty, P. W.

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broadbandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76(4), 2027–2035 (1994).
[Crossref]

Mima, K.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Miyanaga, N.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Nakai, S.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91(1-2), 9–12 (1992).
[Crossref]

Nakano, H.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91(1-2), 9–12 (1992).
[Crossref]

Nakatsuka, M.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91(1-2), 9–12 (1992).
[Crossref]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).
[Crossref]

Skupsky, S.

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broadbandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76(4), 2027–2035 (1994).
[Crossref]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).
[Crossref]

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).
[Crossref]

Tsubakimoto, K.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91(1-2), 9–12 (1992).
[Crossref]

van Howe, J.

Wang, S.

Xu, C.

Xu, J.

Xu, Q.

Yamanaka, C.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Yamauchi, M.

T. Khayim, M. Yamauchi, D. S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

Yang, C.

Zhang, B.

Zhang, R.

Zheng, J.

Zhe-Qiang, Z.

Appl. Opt. (2)

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

J. Zheng, S. Wang, and J. Xu, “Time-grating for the generation of STUD pulse trains,” Chin. Phys. Lett. 30(4), 044204 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Khayim, M. Yamauchi, D. S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

J. Appl. Phys. (2)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66(8), 3456–3462 (1989).
[Crossref]

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broadbandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76(4), 2027–2035 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (2)

G. Magyar, “Ultrashort laser pulses and their uses,” Nature 218(5136), 16–19 (1968).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91(1-2), 9–12 (1992).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53(11), 1057–1060 (1984).
[Crossref]

Other (3)

B. Afeyan, BAPS (2009) DPP.T05.7. http://meetings.aps.org/link/BAPS.2009.DPP.TO5.7 .

B. Afeyan and S. Huller, “Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE,” EPJ Web of Conference 59, 05009 (2013).
[Crossref]

B. Afeyan and S. Huller, “Simulations of drastically reduced SBS with laser pulses composed of a Spike Trains of Uneven Duration and Delay (STUD pulses),” EPJ Web of Conference 59, 05010 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the time grating concept.
Fig. 2
Fig. 2 STUD pulse trains generated from the time grating system with sinusoidal PMF of different modulation depths (a) and different modulation frequencies (b) with N = 4; (c) shows the results modulated with sinusoidal PMF with m = 6, fm = 200 GHz and of different values of N. The upper parts of (a) and (b) are the modulation functions, while the lower parts of (a) and (b), and (c) show the pulses before modulation (blue line) and the pulses after modulation (the other color lines).
Fig. 3
Fig. 3 STUD pulse trains generated from the time grating system with quadratic parabolic PMF of different modulation depths (a) and different repetition rates (b); (c) shows STUD pulses generated by the parabolic PMF with various exponents. Here, N = 4. The upper parts of (a), (b) and (c) are the modulation functions, while the lower parts show the pulses before modulation (blue line) and the pulses after modulation (the other color lines).
Fig. 4
Fig. 4 STUD pulses generated from the time grating system with linear PMF of different modulation depths (a) and different modulation frequencies (b). Here, N = 4. The upper parts of (a) and (b) are the modulation functions, while the lower parts show the pulses before modulation (blue line) and the pulses after modulation (the other color lines).
Fig. 5
Fig. 5 STUD pulses generated from the time grating system with triangle PMF of different modulation depth (a) and different modulation frequency (b). Here, N = 4. The upper parts of (a) and (b) are the modulation functions, while the lower parts show the pulses before modulation (blue line) and the pulses after modulation (the other color lines).
Fig. 6
Fig. 6 STUD pulses generated by the time grating system with modified trapezoidal PMF (the falling edge of the PMF being respectively of linear, quadratic and sinusoidal). The upper part shows the modified trapezoidal PMF while the lower part indicates the pulses before modulation (blue line) and the pulses after modulation (the other color lines). Here, N = 2.
Fig. 7
Fig. 7 STUD pulses generated by the time grating system with modified trapezoidal PMF (the edge of the PMF being of sinusoidal). In the upper part, the first, second and third rows show the PMFs with different modulation frequencies, different modulation depths, and different maximum plateau values, respectively. The lower part shows the pulses before modulation (blue line) and the STUD pulses after modulation (the other color lines). Here, N = 12.
Fig. 8
Fig. 8 STUD pulses generated by the time grating system with the modified trapezoidal PMF with quadratic bevel edges. The upper part shows the modified trapezoidal PMF while the lower part indicates the pulse before modulation (blue curve) and the pulse after modulation (greed curve). Here, N = 12, fm = 50 GHz, m = 15 and the maximum value of PMF is 25.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E i (t)= 1 N E 0 (t) H i (t)exp[i ϕ i (t)],
E N (t)= 1 N E 0 (t)H(t)×[1+ e iΔϕ(t) ++ e i(N1)Δϕ(t) ],
I N (t)= I 0 (t)|H(t) | 2 N ( sin(NΔϕ/2) sin(Δϕ/2) ) 2 .
Δϕ={ m t ' , m( t ' T m /2), m( t ' T m ), t ' < T m /4 T m /4 t ' <3 T m /4 3 T m /4 t ' .

Metrics