Abstract

By using metal-free plasmonics, we report on the excitation of Fano-like resonances in the mid-infrared where the Fano asymmetric parameter, q, varies when the dielectric environment of the plasmonic resonator changes. We use silicon doped InAsSb alloy deposited by molecular beam epitaxy on GaSb substrate to realize the plasmonic resonators exclusively based on semiconductors. We first demonstrate the possibility to realize high quality samples of embedded InAsSb plasmonic resonators into GaSb host using regrowth technique. The high crystalline quality of the deposited structure is confirmed by scanning transmission electron microscopy (STEM) observation. Second, we report Fano-like resonances associated to localized surface plasmons in both cases: uncovered and covered plasmonic resonators, demonstrating a strong line shape modification. The optical properties of the embedded structures correspond to those modeled by finite-difference time-domain (FDTD) method and by a model based on Fano-like line shape. Our results show that all-semiconductor plasmonics gives the opportunity to build new plasmonic structures with embedded resonators of highly doped semiconductor in a matrix of un-doped semiconductor for mid-IR applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, B. Charlot, M. Bomers, F. Neubrech, E. Tournie, and T. Taliercio
Opt. Express 25(22) 26651-26661 (2017)

All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range

Franziska B. Barho, Fernando Gonzalez-Posada, Maria-José Milla-Rodrigo, Mario Bomers, Laurent Cerutti, and Thierry Taliercio
Opt. Express 24(14) 16175-16190 (2016)

Mid-infrared designer metals

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman
Opt. Express 20(11) 12155-12165 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Sci. Appl. 3(8), e197 (2014).
    [Crossref]
  2. N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edgeemitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
    [Crossref]
  3. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
    [Crossref] [PubMed]
  4. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  5. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19(15), 14594–14603 (2011).
    [Crossref] [PubMed]
  6. E. Tokumitsu, “Correlation between Fermi Level Stabilization Positions and Maximum Free Carrier Concentrations in III–V Compound Semiconductors,” Jpn. J. Appl. Phys. 29(2), L698–L701 (1990).
    [Crossref]
  7. T. Taliercio, V. Ntsame Guilengui, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “GaSb-based all-semiconductor mid-IR plasmonics,” Proc. SPIE 8631, 8631–8672 (2013).
    [Crossref]
  8. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
    [Crossref]
  9. T. Taliercio, V. Ntsame Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an easy way to measure the plasma frequency of thin layers,” Opt. Express 22(20), 24294–24303 (2014).
    [Crossref] [PubMed]
  10. S. J. Pearton and D. R. Norton, “Dry etching of electronic oxides, polymers, and semiconductors,” Plasma Process. Polym. 2(1), 16–37 (2005).
    [Crossref]
  11. C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella, “Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges,” J. Vac. Sci. Technol. B 8(4), 596 (1990).
    [Crossref]
  12. V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
    [Crossref]
  13. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 5.
  14. J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82(19), 195301 (2010).
    [Crossref]
  15. E. D. Pauk, and, R. T. Holm, “Indium Arsenide (InAs),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  16. B. R. Bennett, R. A. Soref, and J. A. del Alamo, “Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP,” J. Quant. Electron. 26(1), 113–122 (1990).
    [Crossref]
  17. D. F. Edwards, and R. H. White, “Gallium Antimonide (GaSb),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  18. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  19. Finite difference time domain method has been done with Lumerical FDTD Solutions from Lumerical Solutions Inc.

2014 (2)

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Sci. Appl. 3(8), e197 (2014).
[Crossref]

T. Taliercio, V. Ntsame Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an easy way to measure the plasma frequency of thin layers,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

2013 (2)

T. Taliercio, V. Ntsame Guilengui, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “GaSb-based all-semiconductor mid-IR plasmonics,” Proc. SPIE 8631, 8631–8672 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (1)

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

2011 (1)

2010 (3)

J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82(19), 195301 (2010).
[Crossref]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

2008 (1)

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edgeemitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[Crossref]

2005 (1)

S. J. Pearton and D. R. Norton, “Dry etching of electronic oxides, polymers, and semiconductors,” Plasma Process. Polym. 2(1), 16–37 (2005).
[Crossref]

2001 (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

1990 (3)

C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella, “Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges,” J. Vac. Sci. Technol. B 8(4), 596 (1990).
[Crossref]

E. Tokumitsu, “Correlation between Fermi Level Stabilization Positions and Maximum Free Carrier Concentrations in III–V Compound Semiconductors,” Jpn. J. Appl. Phys. 29(2), L698–L701 (1990).
[Crossref]

B. R. Bennett, R. A. Soref, and J. A. del Alamo, “Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP,” J. Quant. Electron. 26(1), 113–122 (1990).
[Crossref]

Bardou, N.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. del Alamo, “Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP,” J. Quant. Electron. 26(1), 113–122 (1990).
[Crossref]

Bernardin, T.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Sci. Appl. 3(8), e197 (2014).
[Crossref]

Blanchard, R.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edgeemitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[Crossref]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Sci. Appl. 3(8), e197 (2014).
[Crossref]

Capasso, F.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edgeemitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[Crossref]

Cerutti, L.

T. Taliercio, V. Ntsame Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an easy way to measure the plasma frequency of thin layers,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

T. Taliercio, V. Ntsame Guilengui, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “GaSb-based all-semiconductor mid-IR plasmonics,” Proc. SPIE 8631, 8631–8672 (2013).
[Crossref]

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Chakrabarti, U. K.

C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella, “Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges,” J. Vac. Sci. Technol. B 8(4), 596 (1990).
[Crossref]

Collin, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Constantine, C.

C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella, “Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges,” J. Vac. Sci. Technol. B 8(4), 596 (1990).
[Crossref]

del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. del Alamo, “Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP,” J. Quant. Electron. 26(1), 113–122 (1990).
[Crossref]

Edamura, T.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edgeemitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[Crossref]

Emerson, A. B.

C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella, “Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges,” J. Vac. Sci. Technol. B 8(4), 596 (1990).
[Crossref]

Fan, J.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edgeemitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Greffet, J.-J.

Haïdar, R.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Hobson, W. S.

C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella, “Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges,” J. Vac. Sci. Technol. B 8(4), 596 (1990).
[Crossref]

Johnson, D.

C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella, “Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges,” J. Vac. Sci. Technol. B 8(4), 596 (1990).
[Crossref]

Kan, H.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edgeemitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[Crossref]

Kinsella, A. P.

C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella, “Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges,” J. Vac. Sci. Technol. B 8(4), 596 (1990).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Leon, J.

J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82(19), 195301 (2010).
[Crossref]

Li, D.

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

N’Tsame Guilengui, V.

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Nielsen, M. G.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Sci. Appl. 3(8), e197 (2014).
[Crossref]

Ning, C. Z.

Norton, D. R.

S. J. Pearton and D. R. Norton, “Dry etching of electronic oxides, polymers, and semiconductors,” Plasma Process. Polym. 2(1), 16–37 (2005).
[Crossref]

Ntsame Guilengui, V.

Pearton, S. J.

S. J. Pearton and D. R. Norton, “Dry etching of electronic oxides, polymers, and semiconductors,” Plasma Process. Polym. 2(1), 16–37 (2005).
[Crossref]

C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella, “Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges,” J. Vac. Sci. Technol. B 8(4), 596 (1990).
[Crossref]

Pelouard, J.-L.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Pors, A.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Sci. Appl. 3(8), e197 (2014).
[Crossref]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

Rodriguez, J.-B.

T. Taliercio, V. Ntsame Guilengui, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “GaSb-based all-semiconductor mid-IR plasmonics,” Proc. SPIE 8631, 8631–8672 (2013).
[Crossref]

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Rommeluère, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. del Alamo, “Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP,” J. Quant. Electron. 26(1), 113–122 (1990).
[Crossref]

Taliercio, T.

T. Taliercio, V. Ntsame Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an easy way to measure the plasma frequency of thin layers,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

T. Taliercio, V. Ntsame Guilengui, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “GaSb-based all-semiconductor mid-IR plasmonics,” Proc. SPIE 8631, 8631–8672 (2013).
[Crossref]

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82(19), 195301 (2010).
[Crossref]

Tokumitsu, E.

E. Tokumitsu, “Correlation between Fermi Level Stabilization Positions and Maximum Free Carrier Concentrations in III–V Compound Semiconductors,” Jpn. J. Appl. Phys. 29(2), L698–L701 (1990).
[Crossref]

Tournié, E.

T. Taliercio, V. Ntsame Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an easy way to measure the plasma frequency of thin layers,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

T. Taliercio, V. Ntsame Guilengui, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “GaSb-based all-semiconductor mid-IR plasmonics,” Proc. SPIE 8631, 8631–8672 (2013).
[Crossref]

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Vincent, G.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

Weeber, J.-C.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Sci. Appl. 3(8), e197 (2014).
[Crossref]

Yamanishi, M.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edgeemitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[Crossref]

Yu, N.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edgeemitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edgeemitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[Crossref]

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

J. Appl. Phys. (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

J. Quant. Electron. (1)

B. R. Bennett, R. A. Soref, and J. A. del Alamo, “Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP,” J. Quant. Electron. 26(1), 113–122 (1990).
[Crossref]

J. Vac. Sci. Technol. B (1)

C. Constantine, D. Johnson, S. J. Pearton, U. K. Chakrabarti, A. B. Emerson, W. S. Hobson, and A. P. Kinsella, “Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges,” J. Vac. Sci. Technol. B 8(4), 596 (1990).
[Crossref]

Jpn. J. Appl. Phys. (1)

E. Tokumitsu, “Correlation between Fermi Level Stabilization Positions and Maximum Free Carrier Concentrations in III–V Compound Semiconductors,” Jpn. J. Appl. Phys. 29(2), L698–L701 (1990).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82(19), 195301 (2010).
[Crossref]

Phys. Rev. Lett. (1)

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett. 104(2), 027401 (2010).
[Crossref] [PubMed]

Plasma Process. Polym. (1)

S. J. Pearton and D. R. Norton, “Dry etching of electronic oxides, polymers, and semiconductors,” Plasma Process. Polym. 2(1), 16–37 (2005).
[Crossref]

Proc. SPIE (1)

T. Taliercio, V. Ntsame Guilengui, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “GaSb-based all-semiconductor mid-IR plasmonics,” Proc. SPIE 8631, 8631–8672 (2013).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Appl. (1)

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Sci. Appl. 3(8), e197 (2014).
[Crossref]

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 5.

E. D. Pauk, and, R. T. Holm, “Indium Arsenide (InAs),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

D. F. Edwards, and R. H. White, “Gallium Antimonide (GaSb),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

Finite difference time domain method has been done with Lumerical FDTD Solutions from Lumerical Solutions Inc.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Steps of the technological process of the studied samples. a) MBE growth of the InAsSb:Si layer on a GaSb substrate. b) SiO2 deposition and photoresist (AZMIR701) spin-coating. c) Holographic insolation and development of the photoresist. d) ICP-RIE of the SiO2 mask performed with CHF3:O2 recipe. e) ICP-RIE of the InAsSb:Si mask performed with Cl2:N2:Ar recipe. f) Final cleaning and SiO2 removal.
Fig. 2
Fig. 2 Reflectance spectra of the sample A obtained in normal incidence under p-polarized light. νp and λp correspond respectively to the plasma wavenumber and plasma wavelength. LSP and IC correspond respectively to localized surface plasmons mode and ionic crystal like behavior.
Fig. 3
Fig. 3 Reflectance dispersion under p-polarized light of sample A. The light cone is represented by the dark dashed line. The Brewster angle is represented by the dark line and the Brewster mode is indicated by the horizontal arrows. The associated plasma wavenumber is indicated on the y axis. The surface plasmon polariton modes are indicated by the linked arrows.
Fig. 4
Fig. 4 Bright-Field Scanning transmission electron microscopy (BF STEM) of the sample C. a) general cross section, b) zoom of the cross section of one ribbon.
Fig. 5
Fig. 5 Reflectance spectra of the samples B and C. The blue open squares and green open circles correspond respectively to the experimental results of the samples B and C. Dark and red dashed lines correspond respectively to model using Fano-like scattering function of the samples B and C. The labels landmark the different localized plasmon modes LSPi (i = 1, 2), IC and the plasma wavnumber, νp.
Fig. 6
Fig. 6 Simulation of the reflectance spectra (dark curve, left axis) and the scattering cross-section (red curve, right axis) of a) the sample B and b) the sample C via the FDTD method. The labels landmark the different localized plasmon modes LSPi (i = 1, 2), IC and the plasma wavenumber, νp. The insets correspond to the electric filed profile of the plasmonic modes pointed by the arrows. The white lines correspond to the shape of the ribbons. The white dashed lines correspond to the InAsSb/GaSb interfaces.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ν= k 2π sin(θ)
Δη= 6.9× 10 22 η ( ω ) 2 { n( m 0 m e ) },
F(Ω)= (Ω+q) 2 ( Ω 2 +1) ,
Ω= ( ω ω LSP ) γ LSP /2 ,

Metrics