Abstract

We design and demonstrate a wideband silicon photonic polarization beamsplitter on a silicon-on-insulator platform. The device consists of two 3 dB broadband couplers cascaded in a point-symmetric network. The transverse electric (TE) and transverse magnetic (TM) modes are coupled to different output ports due to a large difference between their coupling strengths. The device exhibits large isolation at both the two output ports, of more than 20 dB over a large bandwidth of 125 nm, and a small excess loss, of less than 0.5 dB for the entire C-band.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control

Zeqin Lu, Han Yun, Yun Wang, Zhitian Chen, Fan Zhang, Nicolas A. F. Jaeger, and Lukas Chrostowski
Opt. Express 23(3) 3795-3808 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8, L18–L22 (2014).
    [Crossref]
  2. T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
    [Crossref]
  3. A. Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R. T. Chen, “Ultracompact and fabrication-tolerant integrated polarization splitter,” Opt. Lett. 36, 4047–4049 (2011).
    [Crossref] [PubMed]
  4. Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
    [Crossref]
  5. M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
    [Crossref]
  6. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14, 12401–12408 (2006).
    [Crossref] [PubMed]
  7. J. Wang and D. Dai, “Ultra-small silicon polarization beam splitter based on cascaded asymmetry directional couplers,” in Optical Fiber Communication Conference 2013 (Optical Society of America, 2013), paper OTh4I.1.
    [Crossref]
  8. D. Dai, “Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides,” J. Lightwave Technol. 30, 3281–3287 (2012).
    [Crossref]
  9. T. Liang and H. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17, 393–395 (2005).
    [Crossref]
  10. D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24, 673–675 (2012).
    [Crossref]
  11. D. Dai, Z. Wang, and J. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29, 1808–1817 (2011).
    [Crossref]
  12. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  13. J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38, 4–6 (2013).
    [Crossref] [PubMed]
  14. T. Uematsu, T. Kitayama, Y. Ishizaka, and K. Saitoh, “Ultra-broadband silicon-wire polarization beam combiner/splitter based on a wavelength insensitive coupler with a point-symmetrical configuration,” IEEE Photonics J. 6, 1–8 (2014).
    [Crossref]
  15. Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39, 965–968 (2014).
    [Crossref] [PubMed]
  16. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
    [Crossref] [PubMed]
  17. K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
    [Crossref]
  18. Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
    [Crossref] [PubMed]
  19. K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
    [Crossref]
  20. https://www.lumerical.com/tcad-products/fdtd/ .
  21. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
    [Crossref]
  22. Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).
  23. B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett. 9, 1607–1609 (1997).
    [Crossref]
  24. M. Tormen and M. Cherchi, “Wavelength-flattened directional couplers for mirror-symmetric interferometers,” J. Lightwave Technol. 23, 4387–4392 (2005).
    [Crossref]

2015 (4)

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

2014 (3)

Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39, 965–968 (2014).
[Crossref] [PubMed]

T. Uematsu, T. Kitayama, Y. Ishizaka, and K. Saitoh, “Ultra-broadband silicon-wire polarization beam combiner/splitter based on a wavelength insensitive coupler with a point-symmetrical configuration,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8, L18–L22 (2014).
[Crossref]

2013 (2)

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38, 4–6 (2013).
[Crossref] [PubMed]

2012 (2)

D. Dai, “Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides,” J. Lightwave Technol. 30, 3281–3287 (2012).
[Crossref]

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24, 673–675 (2012).
[Crossref]

2011 (3)

2007 (1)

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

2006 (1)

2005 (3)

1997 (1)

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett. 9, 1607–1609 (1997).
[Crossref]

1996 (1)

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

1995 (1)

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[Crossref]

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Baehr-Jones, T.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Barwicz, T.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Bojko, R.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Bowers, J.

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24, 673–675 (2012).
[Crossref]

D. Dai, Z. Wang, and J. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29, 1808–1817 (2011).
[Crossref]

Bowers, J. E.

Caverley, M.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

Chen, R. T.

Chen, Z.

Cherchi, M.

Chrostowski, L.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

Coolbaugh, D. D.

Covey, J.

Dai, D.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8, L18–L22 (2014).
[Crossref]

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38, 4–6 (2013).
[Crossref] [PubMed]

D. Dai, “Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides,” J. Lightwave Technol. 30, 3281–3287 (2012).
[Crossref]

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24, 673–675 (2012).
[Crossref]

D. Dai, Z. Wang, and J. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29, 1808–1817 (2011).
[Crossref]

J. Wang and D. Dai, “Ultra-small silicon polarization beam splitter based on cascaded asymmetry directional couplers,” in Optical Fiber Communication Conference 2013 (Optical Society of America, 2013), paper OTh4I.1.
[Crossref]

Flueckiger, J.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

Fukuda, H.

Haus, H. A.

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

He, S.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8, L18–L22 (2014).
[Crossref]

Hida, Y.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

Hochberg, M.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Hosseini, A.

Hosseini, E. S.

Hu, W.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Huang, Y.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Ippen, E. P.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[Crossref] [PubMed]

Ishizaka, Y.

T. Uematsu, T. Kitayama, Y. Ishizaka, and K. Saitoh, “Ultra-broadband silicon-wire polarization beam combiner/splitter based on a wavelength insensitive coupler with a point-symmetrical configuration,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

Itabashi, S.

Jaeger, N. A. F.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Jinguji, K.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[Crossref]

Kartner, F. X.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Kawachi, M.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[Crossref]

Kitayama, T.

T. Uematsu, T. Kitayama, Y. Ishizaka, and K. Saitoh, “Ultra-broadband silicon-wire polarization beam combiner/splitter based on a wavelength insensitive coupler with a point-symmetrical configuration,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

Kitoh, T.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

Kwong, D.

Leake, G.

Li, H.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Li, Y.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Liang, D.

Liang, T.

T. Liang and H. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17, 393–395 (2005).
[Crossref]

Little, B. E.

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett. 9, 1607–1609 (1997).
[Crossref]

Lu, Z.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Murphy, T.

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett. 9, 1607–1609 (1997).
[Crossref]

Peters, J.

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24, 673–675 (2012).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Popovic, P. A.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Rahimi, S.

Rakich, P. T.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Saitoh, K.

T. Uematsu, T. Kitayama, Y. Ishizaka, and K. Saitoh, “Ultra-broadband silicon-wire polarization beam combiner/splitter based on a wavelength insensitive coupler with a point-symmetrical configuration,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Shi, W.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Su, Z.

Sun, J.

Takato, N.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14, 2301–2310 (1996).
[Crossref]

Tang, Y.

Timurdogan, E.

Tormen, M.

Tsang, H.

T. Liang and H. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17, 393–395 (2005).
[Crossref]

Tsuchizawa, T.

Tu, Z.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Uematsu, T.

T. Uematsu, T. Kitayama, Y. Ishizaka, and K. Saitoh, “Ultra-broadband silicon-wire polarization beam combiner/splitter based on a wavelength insensitive coupler with a point-symmetrical configuration,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

Wang, J.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8, L18–L22 (2014).
[Crossref]

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38, 4–6 (2013).
[Crossref] [PubMed]

J. Wang and D. Dai, “Ultra-small silicon polarization beam splitter based on cascaded asymmetry directional couplers,” in Optical Fiber Communication Conference 2013 (Optical Society of America, 2013), paper OTh4I.1.
[Crossref]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Wang, X.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Wang, Y.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Wang, Z.

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24, 673–675 (2012).
[Crossref]

D. Dai, Z. Wang, and J. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29, 1808–1817 (2011).
[Crossref]

Watanabe, T.

Watts, M. R.

Xu, X.

Yamada, K.

Yang, W.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Yi, H.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Yin, M.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Yun, H.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Zhang, F.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

IEEE Photonics J. (2)

T. Uematsu, T. Kitayama, Y. Ishizaka, and K. Saitoh, “Ultra-broadband silicon-wire polarization beam combiner/splitter based on a wavelength insensitive coupler with a point-symmetrical configuration,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7, 1–10 (2015).

IEEE Photonics Technol. Lett. (3)

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett. 9, 1607–1609 (1997).
[Crossref]

T. Liang and H. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17, 393–395 (2005).
[Crossref]

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24, 673–675 (2012).
[Crossref]

J. Lightwave Technol. (5)

J. Vac. Sci. Technol. B (1)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06F309 (2011).
[Crossref]

Laser Photonics Rev. (1)

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8, L18–L22 (2014).
[Crossref]

Nat. Photonics (2)

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Opt. Commun. (2)

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Other (2)

J. Wang and D. Dai, “Ultra-small silicon polarization beam splitter based on cascaded asymmetry directional couplers,” in Optical Fiber Communication Conference 2013 (Optical Society of America, 2013), paper OTh4I.1.
[Crossref]

https://www.lumerical.com/tcad-products/fdtd/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of a point-symmetric network; (b) responses of a 3 dB 2×2 coupler and its point-symmetric network. The shadow regions mark out the variations of their respective cross-coupling powers.
Fig. 2
Fig. 2 (a) Schematic of our broadband PBS; (b) schematic of the first 3 dB broadband coupler [18].
Fig. 3
Fig. 3 FDTD simulation results of the 3 dB broadband coupler for (a) the TE mode and (b) the TM mode.
Fig. 4
Fig. 4 FDTD simulation results for the PBS. (a) Output spectra for the TE mode; (b) output spectra for the TM mode; (c) isolation spectrum at the through port; (d) isolation spectrum at the cross port.
Fig. 5
Fig. 5 Scanning electron microscope (SEM) images for one of our fabricated test devices.
Fig. 6
Fig. 6 Sketch of measurement setup. The yellow and pink triangles are the on-chip grating couplers for the TE and TM modes, respectively.
Fig. 7
Fig. 7 Measurement results for the PBS test set 1. (a) Output spectra for the TE mode; (b) output spectra for the TM mode; (c) isolation spectra at the through port; (d) isolation spectra at the cross port.
Fig. 8
Fig. 8 Measurement results for the three identical test sets. (a) Isolation spectra at the through ports; (b) isolation spectra at the cross ports.
Fig. 9
Fig. 9 ER spectra for the test set 1 for the (a) TE and (b) TM modes.

Tables (1)

Tables Icon

Table 1 Comparison of demonstrated PBSs on SOI.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

T = [ t ( λ ) κ * ( λ ) κ ( λ ) t * ( λ ) ]
T point symmetric = [ t * ( λ ) κ * ( λ ) κ ( λ ) t ( λ ) ]
T T point symmetric = [ t ( λ ) t * ( λ ) κ ( λ ) κ * ( λ ) 2 t ( λ ) κ * ( λ ) 2 t * ( λ ) κ ( λ ) t ( λ ) t * ( λ ) κ ( λ ) κ * ( λ ) ]
[ E 3 E 4 ] = T [ 1 0 ] , [ E 5 E 6 ] = T T point symmetric [ 1 0 ]
E 3 ( λ ) = t ( λ ) , E 4 ( λ ) = κ ( λ ) , E 5 ( λ ) = t ( λ ) t * ( λ ) κ ( λ ) κ * ( λ ) , E 6 ( λ ) = 2 t ( λ ) κ * ( λ )
P 3 ( λ ) = | E 3 ( λ ) | 2 = | t ( λ ) | 2 , P 4 ( λ ) = | E 4 ( λ ) | 2 = | κ ( λ ) | 2
P 5 ( λ ) = | E 5 ( λ ) | 2 = ( P 3 ( λ ) P 4 ( λ ) ) 2 = ( Δ P ( λ ) ) 2
P 6 ( λ ) = P in P 5 ( λ ) = 1 ( Δ P ( λ ) ) 2
( Isolation at the through port ) = 10 log 10 P TE , through P TM , through
( Isolation at the cross port ) = 10 log 10 P TM , cross P TE , cross
( ER for the TE mode ) = | 10 log 10 P TE , through P TE , cross |
( ER for the TM mode ) = | 10 log 10 P TM , through P TM , cross |

Metrics