Abstract

In this study, we examined five types of phase gratings in a two-dimensional (2D) single grating interferometer with multidot metal targets embedded in a diamond substrate. For a phase grating consisting of two stacked 1D π/2-phase gratings and a checkerboard π-phase grating the multidot-pattern self-images with high visibility (40%) were obtained as expected from simulations. In addition to an absorption image, differential phase contrast and dark-field images in both x and y directions were derived from a single image. We also examined face-centered-square multidot metal targets, which doubled the x-ray intensity, and obtained differential phase contrast images in both x and y directions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
X-ray phase contrast imaging by compact Talbot–Lau interferometer with a single transmission grating

Naoki Morimoto, Sho Fujino, Ken-ichi Ohshima, Jimpei Harada, Takuji Hosoi, Heiji Watanabe, and Takayoshi Shimura
Opt. Lett. 39(15) 4297-4300 (2014)

Two dimensional x-ray phase imaging using single grating interferometer with embedded x-ray targets

Naoki Morimoto, Sho Fujino, Amane Yamazaki, Yasuhiro Ito, Takuji Hosoi, Heiji Watanabe, and Takayoshi Shimura
Opt. Express 23(13) 16582-16588 (2015)

Hard x-ray phase contrast imaging using a tabletop Talbot–Lau interferometer with multiline embedded x-ray targets

Takayoshi Shimura, Naoki Morimoto, Sho Fujino, Takaharu Nagatomi, Keni-chi Oshima, Jimpei Harada, Kazuhiko Omote, Naohisa Osaka, Takuji Hosoi, and Heiji Watanabe
Opt. Lett. 38(2) 157-159 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. 44(9A), 6355–6367 (2005).
    [Crossref]
  2. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
    [Crossref]
  3. M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
    [Crossref] [PubMed]
  4. T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
    [Crossref] [PubMed]
  5. C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
    [Crossref]
  6. M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
    [Crossref]
  7. S. Rutishauser, M. Bednarzik, I. Zanette, T. Weitkamp, M. Börner, J. Mohr, and C. David, “Fabrication of two-dimensional hard x-ray diffraction gratings,” Microelectron. Eng. 101, 12–16 (2013).
    [Crossref]
  8. T. Shimura, N. Morimoto, S. Fujino, T. Nagatomi, K. C. Oshima, J. Harada, K. Omote, N. Osaka, T. Hosoi, and H. Watanabe, “Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets,” Opt. Lett. 38(2), 157–159 (2013).
    [Crossref] [PubMed]
  9. N. Morimoto, S. Fujino, K. Ohshima, J. Harada, T. Hosoi, H. Watanabe, and T. Shimura, “X-ray phase contrast imaging by compact Talbot-Lau interferometer with a single transmission grating,” Opt. Lett. 39(15), 4297–4300 (2014).
    [Crossref] [PubMed]
  10. A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
    [Crossref]
  11. N. Morimoto, S. Fujino, A. Yamazaki, Y. Ito, T. Hosoi, H. Watanabe, and T. Shimura, “Two dimensional x-ray phase imaging using single grating interferometer with embedded x-ray targets,” Opt. Express 23(13), 16582–16588 (2015).
    [Crossref] [PubMed]
  12. I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
    [Crossref] [PubMed]
  13. H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
    [Crossref] [PubMed]
  14. G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
    [Crossref] [PubMed]
  15. K. S. Morgan, P. Modregger, S. C. Irvine, S. Rutishauser, V. A. Guzenko, M. Stampanoni, and C. David, “A sensitive x-ray phase contrast technique for rapid imaging using a single phase grid analyzer,” Opt. Lett. 38(22), 4605–4608 (2013).
    [Crossref] [PubMed]
  16. I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for x-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
    [Crossref]
  17. M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
    [Crossref] [PubMed]
  18. A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
    [Crossref]
  19. H. Fujiwara, “Effects of spatial coherence on Fourier imaging of a periodic object,” Opt. Acta (Lond.) 21(11), 861–869 (1974).
    [Crossref]
  20. T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
    [Crossref]

2015 (1)

2014 (1)

2013 (3)

2011 (4)

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
[Crossref]

H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011).
[Crossref] [PubMed]

G. Sato, T. Kondoh, H. Itoh, S. Handa, K. Yamaguchi, T. Nakamura, K. Nagai, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube,” Opt. Lett. 36(18), 3551–3553 (2011).
[Crossref] [PubMed]

2010 (2)

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for x-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]

2009 (1)

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

2008 (1)

M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
[Crossref] [PubMed]

2007 (2)

C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
[Crossref]

M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
[Crossref]

2006 (2)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[Crossref]

2005 (1)

A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. 44(9A), 6355–6367 (2005).
[Crossref]

1999 (1)

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[Crossref]

1974 (1)

H. Fujiwara, “Effects of spatial coherence on Fourier imaging of a periodic object,” Opt. Acta (Lond.) 21(11), 861–869 (1974).
[Crossref]

Ayón, A. A.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[Crossref]

Baumann, J.

M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
[Crossref] [PubMed]

Bednarzik, M.

S. Rutishauser, M. Bednarzik, I. Zanette, T. Weitkamp, M. Börner, J. Mohr, and C. David, “Fabrication of two-dimensional hard x-ray diffraction gratings,” Microelectron. Eng. 101, 12–16 (2013).
[Crossref]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Börner, M.

S. Rutishauser, M. Bednarzik, I. Zanette, T. Weitkamp, M. Börner, J. Mohr, and C. David, “Fabrication of two-dimensional hard x-ray diffraction gratings,” Microelectron. Eng. 101, 12–16 (2013).
[Crossref]

Braff, R.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[Crossref]

Bruder, J.

C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
[Crossref]

Bunk, O.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
[Crossref] [PubMed]

C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[Crossref]

David, C.

K. S. Morgan, P. Modregger, S. C. Irvine, S. Rutishauser, V. A. Guzenko, M. Stampanoni, and C. David, “A sensitive x-ray phase contrast technique for rapid imaging using a single phase grid analyzer,” Opt. Lett. 38(22), 4605–4608 (2013).
[Crossref] [PubMed]

S. Rutishauser, M. Bednarzik, I. Zanette, T. Weitkamp, M. Börner, J. Mohr, and C. David, “Fabrication of two-dimensional hard x-ray diffraction gratings,” Microelectron. Eng. 101, 12–16 (2013).
[Crossref]

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for x-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
[Crossref] [PubMed]

C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[Crossref]

Den, T.

Denecke, M.

I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for x-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]

Diaz, A.

C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
[Crossref]

Donath, T.

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Engelhardt, M.

M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
[Crossref] [PubMed]

Fujino, S.

Fujiwara, H.

H. Fujiwara, “Effects of spatial coherence on Fourier imaging of a periodic object,” Opt. Acta (Lond.) 21(11), 861–869 (1974).
[Crossref]

Groot, W.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Grünzweig, C.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
[Crossref]

Guzenko, V. A.

Handa, S.

Harada, J.

Hattori, T.

M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
[Crossref]

Hauser, N.

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

Hempel, E.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Hoheisel, M.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Hohl, M. K.

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

Hosoi, T.

Hunabiki, Y.

M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
[Crossref]

Irvine, S. C.

Ito, Y.

Itoh, H.

Kondoh, T.

Kottler, C.

M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
[Crossref] [PubMed]

C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
[Crossref]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[Crossref]

Kubik-Huch, R. A.

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

Kuwabara, H.

A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
[Crossref]

Lin, C. C.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[Crossref]

Matsumoto, M.

M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
[Crossref]

Modregger, P.

Mohr, J.

S. Rutishauser, M. Bednarzik, I. Zanette, T. Weitkamp, M. Börner, J. Mohr, and C. David, “Fabrication of two-dimensional hard x-ray diffraction gratings,” Microelectron. Eng. 101, 12–16 (2013).
[Crossref]

Momose, A.

A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
[Crossref]

M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
[Crossref]

A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. 44(9A), 6355–6367 (2005).
[Crossref]

Morgan, K. S.

Morimoto, N.

Nagai, K.

Nagatomi, T.

Nakamura, T.

Ohshima, K.

Omote, K.

Osaka, N.

Oshima, K. C.

Ouchi, C.

Pfeiffer, F.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
[Crossref] [PubMed]

C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[Crossref]

Popescu, S.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Roessl, E.

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

Rohbeck, T.

C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
[Crossref]

Rutishauser, S.

S. Rutishauser, M. Bednarzik, I. Zanette, T. Weitkamp, M. Börner, J. Mohr, and C. David, “Fabrication of two-dimensional hard x-ray diffraction gratings,” Microelectron. Eng. 101, 12–16 (2013).
[Crossref]

K. S. Morgan, P. Modregger, S. C. Irvine, S. Rutishauser, V. A. Guzenko, M. Stampanoni, and C. David, “A sensitive x-ray phase contrast technique for rapid imaging using a single phase grid analyzer,” Opt. Lett. 38(22), 4605–4608 (2013).
[Crossref] [PubMed]

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for x-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]

Sato, G.

Sawin, H. H.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[Crossref]

Schmidt, M. A.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[Crossref]

Schroer, C.

M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
[Crossref] [PubMed]

Schuster, M.

M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
[Crossref] [PubMed]

Setomoto, Y.

Shimura, T.

Singer, G.

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

Stampanoni, M.

K. S. Morgan, P. Modregger, S. C. Irvine, S. Rutishauser, V. A. Guzenko, M. Stampanoni, and C. David, “A sensitive x-ray phase contrast technique for rapid imaging using a single phase grid analyzer,” Opt. Lett. 38(22), 4605–4608 (2013).
[Crossref] [PubMed]

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

Takeda, H.

M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
[Crossref]

Takiguchi, K.

M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
[Crossref]

Tanaka, M.

M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
[Crossref]

Teshima, T.

Thüring, T.

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

Trippel, M.

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

Utsumi, Y.

M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
[Crossref]

Walker, C. T.

I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for x-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]

Wang, Z.

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

Watanabe, H.

Weitkamp, T.

S. Rutishauser, M. Bednarzik, I. Zanette, T. Weitkamp, M. Börner, J. Mohr, and C. David, “Fabrication of two-dimensional hard x-ray diffraction gratings,” Microelectron. Eng. 101, 12–16 (2013).
[Crossref]

I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for x-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Yamaguchi, K.

Yamazaki, A.

Yashiro, W.

A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
[Crossref]

Zanette, I.

S. Rutishauser, M. Bednarzik, I. Zanette, T. Weitkamp, M. Börner, J. Mohr, and C. David, “Fabrication of two-dimensional hard x-ray diffraction gratings,” Microelectron. Eng. 101, 12–16 (2013).
[Crossref]

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for x-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]

AIP Conf. Proc. (1)

I. Zanette, C. David, S. Rutishauser, T. Weitkamp, M. Denecke, and C. T. Walker, “2D grating simulation for x-ray phase-contrast and dark-field imaging with a Talbot interferometer,” AIP Conf. Proc. 1221, 73–79 (2010).
[Crossref]

Appl. Phys. Express (1)

A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using Lau effect,” Appl. Phys. Express 4(6), 066603 (2011).
[Crossref]

Invest. Radiol. (1)

M. Stampanoni, Z. Wang, T. Thüring, C. David, E. Roessl, M. Trippel, R. A. Kubik-Huch, G. Singer, M. K. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Radiol. 46(12), 801–806 (2011).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[Crossref]

J. Microsc. (1)

M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. 44(9A), 6355–6367 (2005).
[Crossref]

Microelectron. Eng. (2)

C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. 84(5–8), 1172–1177 (2007).
[Crossref]

S. Rutishauser, M. Bednarzik, I. Zanette, T. Weitkamp, M. Börner, J. Mohr, and C. David, “Fabrication of two-dimensional hard x-ray diffraction gratings,” Microelectron. Eng. 101, 12–16 (2013).
[Crossref]

Microsyst. Technol. (1)

M. Matsumoto, K. Takiguchi, M. Tanaka, Y. Hunabiki, H. Takeda, A. Momose, Y. Utsumi, and T. Hattori, “Fabrication of diffraction grating for x-ray Talbot interferometer,” Microsyst. Technol. 13(5–6), 543–546 (2007).
[Crossref]

Nat. Phys. (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Opt. Acta (Lond.) (1)

H. Fujiwara, “Effects of spatial coherence on Fourier imaging of a periodic object,” Opt. Acta (Lond.) 21(11), 861–869 (1974).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, “Tomography with grating interferometers at low-brilliance sources,” Proc. SPIE 6318, 63180S (2006).
[Crossref]

Rev. Sci. Instrum. (1)

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (Left) Schematic view of the embedded x-ray targets. (Right) Two-dimensional x-ray Talbot–Lau interferometer with single transmission grating and multidot targets .
Fig. 2
Fig. 2 Schematic representation of optical setup used for numerical simulation based on Fresnel diffraction theory.
Fig. 3
Fig. 3 (Top row) Phase modulation induced by phase gratings. (Bottom row) Relative intensity of corresponding self-images.
Fig. 4
Fig. 4 Configurations of 2D single grating interferometer. G0 is the multidot metal target, G1 is the phase grating, and G2 is the self-image. The blue zones of the self-images correspond to regions of high x-ray intensity.
Fig. 5
Fig. 5 SEMs of multidot targets embedded in diamond substrate: (a) PS-pattern target and (b) FCS-pattern target.
Fig. 6
Fig. 6 SEMs of (a) 1D grating for π/2⋅π-C, (b) π-CB, (c) π/2-CB, (d) π-M, and (e) π/2-M phase gratings. The grating structures were fabricated from (100)-oriented silicon wafers. The initial wafer thickness was 60 µm.
Fig. 7
Fig. 7 Self-images of each phase grating: (top row) simulation results, (middle row) experimental results, (bottom panel) intensity profiles along horizontal traces shown in the experimental self-images. The simulation results are normalized to the maximum intensity in each image. The scales in the images indicate the length at the detector plane.
Fig. 8
Fig. 8 Simulation results: (a) intensity modulation induced by single 1.5 μm × 1.5 μm square aperture. (b) Diffraction patterns created by waves passing through the aperture in panel (a) calculated by using Eqs. (2) and (11). (c) Intensity profiles along the dotted lines in panel (b). (d) Diffraction patterns produced by π-M and π/2-M phase grating calculated by using Eq. (11). The source–aperture and aperture–detector distances are R = 3.0 cm and Zs = 97 cm, respectively. This configuration is modeled after that of the π-M phase grating.
Fig. 9
Fig. 9 Visibility of self-images as a function of FWHM of the x-ray source.
Fig. 10
Fig. 10 Images of polyethylene sphere obtained by using PS-pattern targets and π-CB phase grating. (a) Self-image, (b) absorption image, DPC images along (c) x direction and (d) y direction, and dark-field images in (e) x direction and (f) y direction. The gray-scale bars in the DPC images give the refraction angle in radians. The object–detector distance was 50 cm. The input power was 60 W (20 kV, 3.0 mA). The exposure time was 8.0 s per image, and 100 images were averaged to reduce noise. The scale in panel (a) gives the length at the sample position.
Fig. 11
Fig. 11 Images of polyethylene sphere obtained by using PS-pattern target and π/2-CB phase grating. (a) Self-image, (b) absorption image, DPC images along (c) x direction and (d) y direction, and (e) dark-field image. The gray-scale bars in the DPC images give the refraction angle in radians. The object–detector distance was 20 cm. The input power was 20 W (20 kV, 1.0 mA). The exposure time was 5.0 s per image, and 100 images were averaged to reduce noise. The scale in panel (a) gives the length at the sample position.
Fig. 12
Fig. 12 X-ray intensity as a function of incident x-ray energy measured by CdZnTe detector with PS- and FCS-pattern intensity targets. The target–detector distance was 100 cm. The tube voltage was 20 kV. The data below 2.8 keV is not shown.
Fig. 13
Fig. 13 Self-images obtained by using FCS-pattern intensity grating with (a) π-CB and (b) π/2-CB phase-grating configurations.

Tables (3)

Tables Icon

Table 1 Results of simulation of five different 2D phase gratings for plane-wave irradiation.

Tables Icon

Table 2 Design parameters for 2D single grating interferometer with various 2D phase gratings.

Tables Icon

Table 3 Experimental conditions of 2D single grating interferometer with various phase gratings.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( x 1 , y 1 )= exp{ i[ k r 01 ϕ( x 1 , y 1 ) ] } r 01 ,
E 2 ( x 2 , y 2 )= 1 iλ E 1 ( x 1 , y 1 ) exp( ik r 12 ) r 12 cos( θ )d x 1 d y 1 ,
I 2 ( x 2 , y 2 )= | E 2 ( x 2 , y 2 ) | 2 .
Z p =m p 1 2 λ ,
Z s = Z p R R Z p ,
p 2s = p 2p R R Z p ,
p 0 = R Z s p 2s .
p 1 = 1 n ( p 0 p 2s p 0 + p 2s ),
R= m n 2 λ ( p 0 2 p 2s p 0 + p 2s ),
Z s = m n 2 λ ( p 0 p 2s 2 p 0 + p 2s ),
E 2 ( x 2 , y 2 )= 1 iλ E 1 ( x 1 , y 1 ) exp( ik r 12 ) r 12 cos( θ )D( θ )d x 1 d y 1 ,
I 2 ( x 2 , y 2 )= 1 λ 2 Γ( x 1 , y 1 , x 1 , y 1 ) E 1 ( x 1 , y 1 ) E 1 ( x 1 , y 1 ) exp[ ik( r 12 r 12 ) ] r 12 r 12 d x 1 d y 1 d x 1 d y 1 ,
Γ( x 1 , y 1 , x 1 , y 1 )=exp[ ( πsL ) 2 2 ( λR ) 2 ],
F( x 2 , y 2 )= A x sin( 2π p 2s x 2 φ x )+ A y sin( 2π p 2s y 2 φ y )+C,
F( x 2 , y 2 )=Asin( 2π p 2s x 2 φ x )sin( 2π p 2s y 2 φ y )+C,

Metrics