Abstract

We study the lifetime of two common fluorescent dye molecules from the Alexa Fluor NHS Ester family dissolved in water in an opaque aqueous dispersion of dielectric polystyrene nanoparticles. We investigate the role of the dispersion composition by varying the particle concentration and adding SDS (sodium dodecyl sulfate) surfactant molecules. The observed strong changes in lifetime of Alexa 430 can be attributed to the relative contribution of radiative and non-radiative decay channels while the lifetime of the Alexa 488 dye depends only weakly on the sample composition. For Alexa 430, a dye with a rather low quantum yield in aqueous solution, the addition of polystyrene nanoparticles leads to a significant enhancement in quantum yield and an associated increase of the fluorescent lifetime by up to 55 %. We speculate that the increased quantum yield can be attributed to the hydrophobic effect on the structure of water in the boundary layer around the polystyrene particles in suspension. Adding SDS acts as a quencher. Over a range of particle concentrations the particle induced increase of the lifetime can be completely compensated by adding SDS.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence-lifetime measurements in monodispersed suspensions of polystyrene particles

B. Y. Tong, P. K. John, Yung-tang Zhu, Y. S. Liu, S. K. Wong, and W. R. Ware
J. Opt. Soc. Am. B 10(2) 356-359 (1993)

Study of optical parameters of polystyrene spheres in dense aqueous suspensions

Hui Xia, Caixia Miao, Jianwei Cheng, Shaohua Tao, Ruyi Pang, and Xiaoyun Wu
Appl. Opt. 51(16) 3263-3268 (2012)

Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions

A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour
Appl. Opt. 53(24) 5398-5409 (2014)

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [Crossref] [PubMed]
  2. P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref] [PubMed]
  3. B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal tio2 films,” Nature (London) 353, 737–740 (1991).
    [Crossref]
  4. M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (John Wiley & Sons, 2010).
  5. B. Kolaric, K. Baert, M. Van der Auweraer, R. A. Vallée, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chem. Mater. 19, 5547–5552 (2007).
    [Crossref]
  6. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature materials 11, 1017–1022 (2012).
    [PubMed]
  7. H. A. Al Attar and A. P. Monkman, “FRET and competing processes between conjugated polymer and dye substituted dna strands: A comparative study of probe selection in dna detection,” Biomacromolecules 10, 1077–1083 (2009).
    [Crossref] [PubMed]
  8. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interf. Sci. 26, 62–69 (1968).
    [Crossref]
  9. N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
    [Crossref] [PubMed]
  10. B. Tong, Y. Liu, S. Wong, P. John, Y.-t. Zhu, and W. Ware, “Fluorescence-lifetime measurements in monodispersed suspensions of polystyrene particles,” J. Opt. Soc. Am. B 10, 356–359 (1993).
    [Crossref]
  11. W. Becker, The bh TCSPC Handbook (Becker & Hickl, 2008).
  12. D. R. Larson, H. Ow, H. D. Vishwasrao, A. A. Heikal, U. Wiesner, and W. W. Webb, “Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores,” Chem. Mater. 20, 2677–2684 (2008).
    [Crossref]
  13. K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
    [Crossref] [PubMed]
  14. K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
    [Crossref]
  15. D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand, “Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein,” J. Phys. Chem. B 106, 3724–3734 (2002).
    [Crossref]
  16. D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6g and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
    [Crossref] [PubMed]
  17. J. J. Sakurai and S. F. Tuan, Modern quantum mechanics, (Addison-Wesley Reading, 1985), Vol. I.
  18. R. Chance, A. Prock, and R. Sylbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys 37, 65 (1978).
  19. R. X. Bian, R. C. Dunn, X. S. Xie, and P. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772 (1995).
    [Crossref] [PubMed]
  20. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [Crossref] [PubMed]
  21. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [Crossref] [PubMed]
  22. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton University Press, 2011).
  23. M. R. Jorgensen, J. W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
    [Crossref] [PubMed]
  24. M. Leistikow, A. Mosk, E. Yeganegi, S. Huisman, A. Lagendijk, and W. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
    [Crossref] [PubMed]
  25. D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201–219 (2003).
    [Crossref]
  26. A. H. Sihvola, Electromagnetic mixing formulas and applications, Vol. XLVII (Iet, 1999).
    [Crossref]
  27. J. Martorell and N. Lawandy, “Spontaneous emission in a disordered dielectric medium,” Phys. Rev. Lett. 66, 887 (1991).
    [Crossref] [PubMed]
  28. L. Froufe-Pérez, R. Carminati, and J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
    [Crossref]
  29. M. Birowosuto, S. Skipetrov, W. Vos, and A. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
    [Crossref] [PubMed]
  30. R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. Van Hulst, “Long-tail statistics of the purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106, 163902 (2011).
    [Crossref] [PubMed]
  31. L. F. Rojas-Ochoa, J. Mendez-Alcaraz, J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93, 073903 (2004).
    [Crossref] [PubMed]
  32. Thermo Fisher, “Alexa Fluor NHS Ester product manual,” https://tools.thermofisher.com/content/sfs/manuals/ .
  33. L. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
    [Crossref]
  34. P. Zakharov and L. Rojas-Ochoa, “Online Mie scattering calculator,” http://www.lsinstruments.ch/ .
  35. Y. I. Tarasevich, “State and structure of water in vicinity of hydrophobic surfaces,” Colloid J. 73, 257–266 (2011).
    [Crossref]
  36. A. Faghihnejad and H. Zeng, “Hydrophobic interactions between polymer surfaces: using polystyrene as a model system,” Soft Matter 8, 2746–2759 (2012).
    [Crossref]
  37. I. Bischofberger, D. Calzolari, P. De LosRios, I. Jelezarov, and V. Trappe, “Hydrophobic hydration of poly-n-isopropyl acrylamide: a matter of the mean energetic state of water,” Sci. Rep. 4, 4377 (2014).
    [Crossref] [PubMed]
  38. P. Kumar and H. Bohidar, “Universal correlation between solvent polarity, fluorescence lifetime and macroscopic viscosity of alcohol solutions,” J. Fluoresc. 22, 865–870 (2012).
    [Crossref] [PubMed]
  39. Due to the lower refractive index of the silica particles suspended in water the scattering mean free path is always larger than sample thickness both for the incident and the emission wavelength and over the range of particle concentrations studied [33, 34]. The light collection efficiency is thus not affected by multiple scattering of light.

2014 (1)

I. Bischofberger, D. Calzolari, P. De LosRios, I. Jelezarov, and V. Trappe, “Hydrophobic hydration of poly-n-isopropyl acrylamide: a matter of the mean energetic state of water,” Sci. Rep. 4, 4377 (2014).
[Crossref] [PubMed]

2012 (3)

P. Kumar and H. Bohidar, “Universal correlation between solvent polarity, fluorescence lifetime and macroscopic viscosity of alcohol solutions,” J. Fluoresc. 22, 865–870 (2012).
[Crossref] [PubMed]

A. Faghihnejad and H. Zeng, “Hydrophobic interactions between polymer surfaces: using polystyrene as a model system,” Soft Matter 8, 2746–2759 (2012).
[Crossref]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature materials 11, 1017–1022 (2012).
[PubMed]

2011 (4)

M. R. Jorgensen, J. W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
[Crossref] [PubMed]

M. Leistikow, A. Mosk, E. Yeganegi, S. Huisman, A. Lagendijk, and W. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. Van Hulst, “Long-tail statistics of the purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106, 163902 (2011).
[Crossref] [PubMed]

Y. I. Tarasevich, “State and structure of water in vicinity of hydrophobic surfaces,” Colloid J. 73, 257–266 (2011).
[Crossref]

2010 (1)

M. Birowosuto, S. Skipetrov, W. Vos, and A. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref] [PubMed]

2009 (1)

H. A. Al Attar and A. P. Monkman, “FRET and competing processes between conjugated polymer and dye substituted dna strands: A comparative study of probe selection in dna detection,” Biomacromolecules 10, 1077–1083 (2009).
[Crossref] [PubMed]

2008 (1)

D. R. Larson, H. Ow, H. D. Vishwasrao, A. A. Heikal, U. Wiesner, and W. W. Webb, “Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores,” Chem. Mater. 20, 2677–2684 (2008).
[Crossref]

2007 (2)

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. Vallée, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chem. Mater. 19, 5547–5552 (2007).
[Crossref]

L. Froufe-Pérez, R. Carminati, and J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
[Crossref]

2006 (2)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

2004 (1)

L. F. Rojas-Ochoa, J. Mendez-Alcaraz, J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

2003 (1)

D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201–219 (2003).
[Crossref]

2002 (3)

D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand, “Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein,” J. Phys. Chem. B 106, 3724–3734 (2002).
[Crossref]

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6g and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[Crossref] [PubMed]

L. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[Crossref]

2001 (1)

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

1999 (2)

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
[Crossref] [PubMed]

1995 (1)

R. X. Bian, R. C. Dunn, X. S. Xie, and P. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772 (1995).
[Crossref] [PubMed]

1993 (1)

1991 (2)

B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal tio2 films,” Nature (London) 353, 737–740 (1991).
[Crossref]

J. Martorell and N. Lawandy, “Spontaneous emission in a disordered dielectric medium,” Phys. Rev. Lett. 66, 887 (1991).
[Crossref] [PubMed]

1978 (1)

R. Chance, A. Prock, and R. Sylbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys 37, 65 (1978).

1970 (1)

K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
[Crossref]

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interf. Sci. 26, 62–69 (1968).
[Crossref]

Al Attar, H. A.

H. A. Al Attar and A. P. Monkman, “FRET and competing processes between conjugated polymer and dye substituted dna strands: A comparative study of probe selection in dna detection,” Biomacromolecules 10, 1077–1083 (2009).
[Crossref] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Baert, K.

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. Vallée, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chem. Mater. 19, 5547–5552 (2007).
[Crossref]

Bartl, M. H.

M. R. Jorgensen, J. W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
[Crossref] [PubMed]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Becker, W.

W. Becker, The bh TCSPC Handbook (Becker & Hickl, 2008).

Bhalgat, M. K.

N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
[Crossref] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Bian, R. X.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772 (1995).
[Crossref] [PubMed]

Birowosuto, M.

M. Birowosuto, S. Skipetrov, W. Vos, and A. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref] [PubMed]

Bischofberger, I.

I. Bischofberger, D. Calzolari, P. De LosRios, I. Jelezarov, and V. Trappe, “Hydrophobic hydration of poly-n-isopropyl acrylamide: a matter of the mean energetic state of water,” Sci. Rep. 4, 4377 (2014).
[Crossref] [PubMed]

Bishop-Stewart, J.

N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
[Crossref] [PubMed]

Bohidar, H.

P. Kumar and H. Bohidar, “Universal correlation between solvent polarity, fluorescence lifetime and macroscopic viscosity of alcohol solutions,” J. Fluoresc. 22, 865–870 (2012).
[Crossref] [PubMed]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interf. Sci. 26, 62–69 (1968).
[Crossref]

Bondareff, P.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. Van Hulst, “Long-tail statistics of the purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106, 163902 (2011).
[Crossref] [PubMed]

Brand, L.

D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand, “Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein,” J. Phys. Chem. B 106, 3724–3734 (2002).
[Crossref]

Burresi, M.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature materials 11, 1017–1022 (2012).
[PubMed]

Calzolari, D.

I. Bischofberger, D. Calzolari, P. De LosRios, I. Jelezarov, and V. Trappe, “Hydrophobic hydration of poly-n-isopropyl acrylamide: a matter of the mean energetic state of water,” Sci. Rep. 4, 4377 (2014).
[Crossref] [PubMed]

Carminati, R.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. Van Hulst, “Long-tail statistics of the purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106, 163902 (2011).
[Crossref] [PubMed]

L. Froufe-Pérez, R. Carminati, and J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
[Crossref]

Chance, R.

R. Chance, A. Prock, and R. Sylbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys 37, 65 (1978).

Clays, K.

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. Vallée, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chem. Mater. 19, 5547–5552 (2007).
[Crossref]

Cole, M.

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

Dapkus, P.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

De LosRios, P.

I. Bischofberger, D. Calzolari, P. De LosRios, I. Jelezarov, and V. Trappe, “Hydrophobic hydration of poly-n-isopropyl acrylamide: a matter of the mean energetic state of water,” Sci. Rep. 4, 4377 (2014).
[Crossref] [PubMed]

Dowling, K.

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

Drexhage, K.

K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
[Crossref]

Dunn, R. C.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772 (1995).
[Crossref] [PubMed]

Enderlein, J.

M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (John Wiley & Sons, 2010).

Faghihnejad, A.

A. Faghihnejad and H. Zeng, “Hydrophobic interactions between polymer surfaces: using polystyrene as a model system,” Soft Matter 8, 2746–2759 (2012).
[Crossref]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interf. Sci. 26, 62–69 (1968).
[Crossref]

French, P.

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

Froufe-Pérez, L.

L. Froufe-Pérez, R. Carminati, and J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
[Crossref]

Galusha, J. W.

M. R. Jorgensen, J. W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
[Crossref] [PubMed]

Grätzel, M.

B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal tio2 films,” Nature (London) 353, 737–740 (1991).
[Crossref]

Habert, B.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. Van Hulst, “Long-tail statistics of the purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106, 163902 (2011).
[Crossref] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Haugland, R. P.

N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
[Crossref] [PubMed]

N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
[Crossref] [PubMed]

Heikal, A. A.

D. R. Larson, H. Ow, H. D. Vishwasrao, A. A. Heikal, U. Wiesner, and W. W. Webb, “Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores,” Chem. Mater. 20, 2677–2684 (2008).
[Crossref]

Hofkens, J.

M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (John Wiley & Sons, 2010).

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Huisman, S.

M. Leistikow, A. Mosk, E. Yeganegi, S. Huisman, A. Lagendijk, and W. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Jelezarov, I.

I. Bischofberger, D. Calzolari, P. De LosRios, I. Jelezarov, and V. Trappe, “Hydrophobic hydration of poly-n-isopropyl acrylamide: a matter of the mean energetic state of water,” Sci. Rep. 4, 4377 (2014).
[Crossref] [PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton University Press, 2011).

John, P.

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton University Press, 2011).

Jones, R.

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

Jorgensen, M. R.

M. R. Jorgensen, J. W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
[Crossref] [PubMed]

Kim, I.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Kolaric, B.

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. Vallée, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chem. Mater. 19, 5547–5552 (2007).
[Crossref]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Kumar, P.

P. Kumar and H. Bohidar, “Universal correlation between solvent polarity, fluorescence lifetime and macroscopic viscosity of alcohol solutions,” J. Fluoresc. 22, 865–870 (2012).
[Crossref] [PubMed]

Lagendijk, A.

M. Leistikow, A. Mosk, E. Yeganegi, S. Huisman, A. Lagendijk, and W. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

Larson, D. R.

D. R. Larson, H. Ow, H. D. Vishwasrao, A. A. Heikal, U. Wiesner, and W. W. Webb, “Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores,” Chem. Mater. 20, 2677–2684 (2008).
[Crossref]

Lawandy, N.

J. Martorell and N. Lawandy, “Spontaneous emission in a disordered dielectric medium,” Phys. Rev. Lett. 66, 887 (1991).
[Crossref] [PubMed]

Lee, K. B.

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

Lee, R.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Leistikow, M.

M. Leistikow, A. Mosk, E. Yeganegi, S. Huisman, A. Lagendijk, and W. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

Leung, P.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772 (1995).
[Crossref] [PubMed]

Leung, W.-Y.

N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
[Crossref] [PubMed]

Leveque-Fort, S.

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

Lever, M.

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

Liu, Y.

Magde, D.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6g and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[Crossref] [PubMed]

Mao, F.

N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
[Crossref] [PubMed]

Martorell, J.

J. Martorell and N. Lawandy, “Spontaneous emission in a disordered dielectric medium,” Phys. Rev. Lett. 66, 887 (1991).
[Crossref] [PubMed]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton University Press, 2011).

Meadow, N. D.

D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand, “Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein,” J. Phys. Chem. B 106, 3724–3734 (2002).
[Crossref]

Mendez-Alcaraz, J.

L. F. Rojas-Ochoa, J. Mendez-Alcaraz, J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Millard, P. J.

N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
[Crossref] [PubMed]

Monkman, A. P.

H. A. Al Attar and A. P. Monkman, “FRET and competing processes between conjugated polymer and dye substituted dna strands: A comparative study of probe selection in dna detection,” Biomacromolecules 10, 1077–1083 (2009).
[Crossref] [PubMed]

Mosk, A.

M. Leistikow, A. Mosk, E. Yeganegi, S. Huisman, A. Lagendijk, and W. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

M. Birowosuto, S. Skipetrov, W. Vos, and A. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

O’brien, J.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

O’regan, B.

B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal tio2 films,” Nature (London) 353, 737–740 (1991).
[Crossref]

Ow, H.

D. R. Larson, H. Ow, H. D. Vishwasrao, A. A. Heikal, U. Wiesner, and W. W. Webb, “Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores,” Chem. Mater. 20, 2677–2684 (2008).
[Crossref]

Painter, O.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Panchuk-Voloshina, N.

N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
[Crossref] [PubMed]

Petroff, P.

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Pierrat, R.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. Van Hulst, “Long-tail statistics of the purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106, 163902 (2011).
[Crossref] [PubMed]

Prock, A.

R. Chance, A. Prock, and R. Sylbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys 37, 65 (1978).

Riboli, F.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature materials 11, 1017–1022 (2012).
[PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Rojas-Ochoa, L.

L. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[Crossref]

Rojas-Ochoa, L. F.

L. F. Rojas-Ochoa, J. Mendez-Alcaraz, J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

Romer, S.

L. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[Crossref]

Roseman, S.

D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand, “Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein,” J. Phys. Chem. B 106, 3724–3734 (2002).
[Crossref]

Sáenz, J.

L. Froufe-Pérez, R. Carminati, and J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
[Crossref]

L. F. Rojas-Ochoa, J. Mendez-Alcaraz, J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

Sakurai, J. J.

J. J. Sakurai and S. F. Tuan, Modern quantum mechanics, (Addison-Wesley Reading, 1985), Vol. I.

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Sapienza, R.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. Van Hulst, “Long-tail statistics of the purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106, 163902 (2011).
[Crossref] [PubMed]

Sauer, M.

M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (John Wiley & Sons, 2010).

Savtchenko, R. S.

D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand, “Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein,” J. Phys. Chem. B 106, 3724–3734 (2002).
[Crossref]

Scheffold, F.

L. F. Rojas-Ochoa, J. Mendez-Alcaraz, J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

L. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[Crossref]

Scherer, A.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Schoenfeld, W.

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Schurtenberger, P.

L. F. Rojas-Ochoa, J. Mendez-Alcaraz, J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

L. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[Crossref]

Seybold, P. G.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6g and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[Crossref] [PubMed]

Siegel, J.

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

Sihvola, A. H.

A. H. Sihvola, Electromagnetic mixing formulas and applications, Vol. XLVII (Iet, 1999).
[Crossref]

Skipetrov, S.

M. Birowosuto, S. Skipetrov, W. Vos, and A. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref] [PubMed]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interf. Sci. 26, 62–69 (1968).
[Crossref]

Sylbey, R.

R. Chance, A. Prock, and R. Sylbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys 37, 65 (1978).

Tarasevich, Y. I.

Y. I. Tarasevich, “State and structure of water in vicinity of hydrophobic surfaces,” Colloid J. 73, 257–266 (2011).
[Crossref]

Tong, B.

Toptygin, D.

D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201–219 (2003).
[Crossref]

D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand, “Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein,” J. Phys. Chem. B 106, 3724–3734 (2002).
[Crossref]

Trappe, V.

I. Bischofberger, D. Calzolari, P. De LosRios, I. Jelezarov, and V. Trappe, “Hydrophobic hydration of poly-n-isopropyl acrylamide: a matter of the mean energetic state of water,” Sci. Rep. 4, 4377 (2014).
[Crossref] [PubMed]

Tuan, S. F.

J. J. Sakurai and S. F. Tuan, Modern quantum mechanics, (Addison-Wesley Reading, 1985), Vol. I.

Vallée, R. A.

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. Vallée, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chem. Mater. 19, 5547–5552 (2007).
[Crossref]

Van der Auweraer, M.

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. Vallée, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chem. Mater. 19, 5547–5552 (2007).
[Crossref]

Van Hulst, N.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. Van Hulst, “Long-tail statistics of the purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106, 163902 (2011).
[Crossref] [PubMed]

Vishwasrao, H. D.

D. R. Larson, H. Ow, H. D. Vishwasrao, A. A. Heikal, U. Wiesner, and W. W. Webb, “Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores,” Chem. Mater. 20, 2677–2684 (2008).
[Crossref]

Vos, W.

M. Leistikow, A. Mosk, E. Yeganegi, S. Huisman, A. Lagendijk, and W. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

M. Birowosuto, S. Skipetrov, W. Vos, and A. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref] [PubMed]

Vynck, K.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature materials 11, 1017–1022 (2012).
[PubMed]

Ware, W.

Webb, S.

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

Webb, W. W.

D. R. Larson, H. Ow, H. D. Vishwasrao, A. A. Heikal, U. Wiesner, and W. W. Webb, “Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores,” Chem. Mater. 20, 2677–2684 (2008).
[Crossref]

Wiersma, D. S.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature materials 11, 1017–1022 (2012).
[PubMed]

Wiesner, U.

D. R. Larson, H. Ow, H. D. Vishwasrao, A. A. Heikal, U. Wiesner, and W. W. Webb, “Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores,” Chem. Mater. 20, 2677–2684 (2008).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton University Press, 2011).

Wong, R.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6g and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[Crossref] [PubMed]

Wong, S.

Xie, X. S.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772 (1995).
[Crossref] [PubMed]

Yariv, A.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Yeganegi, E.

M. Leistikow, A. Mosk, E. Yeganegi, S. Huisman, A. Lagendijk, and W. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

Zeng, H.

A. Faghihnejad and H. Zeng, “Hydrophobic interactions between polymer surfaces: using polystyrene as a model system,” Soft Matter 8, 2746–2759 (2012).
[Crossref]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Zhu, Y.-t.

Adv. Chem. Phys (1)

R. Chance, A. Prock, and R. Sylbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys 37, 65 (1978).

Biomacromolecules (1)

H. A. Al Attar and A. P. Monkman, “FRET and competing processes between conjugated polymer and dye substituted dna strands: A comparative study of probe selection in dna detection,” Biomacromolecules 10, 1077–1083 (2009).
[Crossref] [PubMed]

Biophys. J. (1)

K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole, R. Jones, K. Dowling, M. Lever, and P. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[Crossref] [PubMed]

Chem. Mater. (2)

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. Vallée, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chem. Mater. 19, 5547–5552 (2007).
[Crossref]

D. R. Larson, H. Ow, H. D. Vishwasrao, A. A. Heikal, U. Wiesner, and W. W. Webb, “Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores,” Chem. Mater. 20, 2677–2684 (2008).
[Crossref]

Colloid J. (1)

Y. I. Tarasevich, “State and structure of water in vicinity of hydrophobic surfaces,” Colloid J. 73, 257–266 (2011).
[Crossref]

J. Colloid Interf. Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interf. Sci. 26, 62–69 (1968).
[Crossref]

J. Fluoresc. (2)

D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201–219 (2003).
[Crossref]

P. Kumar and H. Bohidar, “Universal correlation between solvent polarity, fluorescence lifetime and macroscopic viscosity of alcohol solutions,” J. Fluoresc. 22, 865–870 (2012).
[Crossref] [PubMed]

J. Histochem. Cytochem. (1)

N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W.-Y. Leung, and R. P. Haugland, “Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates,” J. Histochem. Cytochem. 47, 1179–1188 (1999).
[Crossref] [PubMed]

J. Lumin. (1)

K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand, “Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein,” J. Phys. Chem. B 106, 3724–3734 (2002).
[Crossref]

Nature (London) (1)

B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal tio2 films,” Nature (London) 353, 737–740 (1991).
[Crossref]

Nature materials (1)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature materials 11, 1017–1022 (2012).
[PubMed]

Photochem. Photobiol. (1)

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6g and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[Crossref] [PubMed]

Phys. Rev. A (1)

L. Froufe-Pérez, R. Carminati, and J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
[Crossref]

Phys. Rev. E (1)

L. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[Crossref]

Phys. Rev. Lett. (9)

M. Birowosuto, S. Skipetrov, W. Vos, and A. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105, 013904 (2010).
[Crossref] [PubMed]

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. Van Hulst, “Long-tail statistics of the purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106, 163902 (2011).
[Crossref] [PubMed]

L. F. Rojas-Ochoa, J. Mendez-Alcaraz, J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93, 073903 (2004).
[Crossref] [PubMed]

M. R. Jorgensen, J. W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
[Crossref] [PubMed]

M. Leistikow, A. Mosk, E. Yeganegi, S. Huisman, A. Lagendijk, and W. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

J. Martorell and N. Lawandy, “Spontaneous emission in a disordered dielectric medium,” Phys. Rev. Lett. 66, 887 (1991).
[Crossref] [PubMed]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772 (1995).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

I. Bischofberger, D. Calzolari, P. De LosRios, I. Jelezarov, and V. Trappe, “Hydrophobic hydration of poly-n-isopropyl acrylamide: a matter of the mean energetic state of water,” Sci. Rep. 4, 4377 (2014).
[Crossref] [PubMed]

Science (2)

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Soft Matter (1)

A. Faghihnejad and H. Zeng, “Hydrophobic interactions between polymer surfaces: using polystyrene as a model system,” Soft Matter 8, 2746–2759 (2012).
[Crossref]

Other (8)

P. Zakharov and L. Rojas-Ochoa, “Online Mie scattering calculator,” http://www.lsinstruments.ch/ .

Thermo Fisher, “Alexa Fluor NHS Ester product manual,” https://tools.thermofisher.com/content/sfs/manuals/ .

A. H. Sihvola, Electromagnetic mixing formulas and applications, Vol. XLVII (Iet, 1999).
[Crossref]

M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (John Wiley & Sons, 2010).

W. Becker, The bh TCSPC Handbook (Becker & Hickl, 2008).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton University Press, 2011).

J. J. Sakurai and S. F. Tuan, Modern quantum mechanics, (Addison-Wesley Reading, 1985), Vol. I.

Due to the lower refractive index of the silica particles suspended in water the scattering mean free path is always larger than sample thickness both for the incident and the emission wavelength and over the range of particle concentrations studied [33, 34]. The light collection efficiency is thus not affected by multiple scattering of light.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Sketch of the experimental setup. The lifetime of the dye molecules in a concentrated suspensions of dielectric particles is determined using a custom made two-photon microscope setup combined with a time correlated single photon counting (TCSPC) board. The near infrared fs pulsed laser light λL ∼ 900nm is focused inside the sample and the emitted fluorescence is detected using a hybrid photo-detector module (HPD). (b) Time-resolved fluorescence of the dye Alexa 430 dissolved in water at neutral pH (decay time in the pure solvent τs = 3.19ns) (c) Time-resolved fluorescence of the dye Alexa 430 in a suspension of polystyrene particle concentration of ϕ = 4.8% (decay time τ = 4.75ns). The acquisition time has been set to 60s in both cases. The TCSPC data is fitted with a stretched exponential function (F(t) = F0 +Ae−(t/τ)g) to verify that the decay is single exponential.
Fig. 2
Fig. 2 (a) Measured lifetime normalized to value in pure water (Alexa 488: τs = 4.1ns, Alexa 430: τs = 3.19ns) for different sample compositions. The solid lines are empirical fits to the data with τ(ϕ)s = a tanh[(ϕϕ0)/w] + 1, a = τmaxs − 1. Alexa 430 SDS free: a = 0.56,w = 3.8% and ϕ0 = 0, Alexa 430 SDS 1mM: a = 0.55,w = 3.07% and ϕ0 = 1.68%. The dotted lines show the linear expansion of the fit τ(ϕ)s ≃ 1 + (a/w)ϕ at low concentrations. The dashed line is derived from the empty spherical cavity (ESC) model as explained in the text. (b) Measured count rates I normalized to value in pure water Is for the same samples as in (a). Solids lines are calculated from I(ϕ)/Is = 1.25·η(ϕ)s (for details see text).
Fig. 3
Fig. 3 Quenching of fluorescence by adding SDS dye solutions at two different nanoparticle concentrations ϕ. Relative changes in fluorescent count rates (full squares) and lifetimes (full circles) of Alexa 430 fluorophores. Solids lines: Eq. (4) and Eq. (5) for (a) ϕ = 2.3% with quenching constants Kd = 0.17 mM−1 and Ks = 0.16 mM−1 and (b) ϕ = 4.8% with quenching constants Kd = 0.037 mM−1 and Ks = 0.11 mM−1.
Fig. 4
Fig. 4 The fluorescent properties of dye molecules located in the vicinity of hydrophobic polystyrene particles are modified leading to an increased quantum efficiency η. The sketch shows the polystyrene particle and the shaded corona of thickness d as an indication for the effective range of the hydrophobic interactions. The dye molecules are shown as the small objects. At high particle densities the coronas will overlap and the increase in η saturates as observed in the experiment, Fig. 2.
Fig. 5
Fig. 5 Measured lifetime and emission count rate of Alexa 430 in aqueous dispersion of silica (SiO2) colloidal particles. The plotted values are normalized by the value obtained in pure water.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η = Γ r / ( Γ r + Γ n r )
τ f = 1 ( Γ r + Γ n r )
τ f = η Γ r 1
I Q = 0 I ( Q ) = [ 1 + K d [ Q ] ] + [ 1 + K s [ Q ] ]
τ Q = 0 τ ( Q ) = [ 1 + K d [ Q ] ]
Γ r = ( 3 n 2 ) 2 / ( 2 n 2 + 1 ) 2 n Γ 0

Metrics