Abstract

We demonstrate an 80 Gbit/s, 5 Gsymbol/s 256 QAM coherent optical transmission by employing an injection-locked homodyne detection circuit based on both fiber lasers and LDs. With either circuit, low phase noise carrier-phase synchronization between the transmitted data signal and an LO were achieved with a phase noise variance of only 0.2 degrees. As a result, we have successfully transmitted an 80 Gbit/s data signal over 150 km with a simple receiver configuration. This is the highest QAM multiplicity yet realized with injection-locked homodyne detection.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator

Yixin Wang, Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa
Opt. Express 24(19) 22088-22096 (2016)

120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km

Yixin Wang, Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa
Opt. Express 22(25) 31310-31316 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Coherent detection of phase-shift keying signals using digital carrier-phase estimation,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuI4.
    [Crossref]
  2. J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, “1-Gsymbol/s 64-QAM coherent optical transmission over 150 km,” IEEE Photonics Technol. Lett. 19(9), 638–640 (2007).
    [Crossref]
  3. D. Qian, E. Ip, M. F. Huang, M. J. Li, and T. Wan, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), London, 2013, Th.1.C.5.
  4. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]
  5. S. K. Ibrahim, S. Sygletos, R. Weerasuriya, and A. D. Ellis, “Novel real-time homodyne coherent receiver using a feed-forward based carrier extraction scheme for phase modulated signals,” Opt. Express 19(9), 8320–8326 (2011).
    [Crossref] [PubMed]
  6. Z. Liu, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM using simple optical carrier recovery,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, W4K.3.
    [Crossref]
  7. S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2012, JW2A.64.
    [Crossref]
  8. Z. Liu, D. S. J. Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33(1), 34–41 (2015).
    [Crossref]
  9. A. Albores-Mejia, T. Kaneko, E. Banno, K. Uesaka, H. Shoji, and H. Kuwatsuka, “Hardware efficient QAM16 all-optical carrier recovery using a single optically-stabilized injection-locked semiconductor laser,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Cannes, 2014, Tu.3.1.4.
    [Crossref]
  10. A. Bogris and C. Ressopoulos, “Analysis of 50 Gbaud homodyne coherent receivers relying on line-coding and injection locking in lasers,” in Proceedings of the Conf. on Lasers and Electro-Optics (CLEO), San Jose, 2014, JTh2A.11.
    [Crossref]
  11. Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,” Opt. Express 22(25), 31310–31316 (2014).
    [Crossref] [PubMed]
  12. L. Stolpner, S. Lee, S. Li, A. Mehnert, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” inProceedings of the SPIE, San Jose, 2008, 700457.
    [Crossref]
  13. Y. Wang, S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “140 Gbit/s, 128 QAM LD-based coherent transmission over 150 km with an injection-locked homodyne detection technique,” inProceedings of the Asia Communications and Photonics Conference (ACP), Shanghai, 2014, ATh1E.3.
    [Crossref]
  14. K. Kasai, S. Beppu, Y. Wang, and M. Nakazawa, “256 QAM (polarization-multiplexed, 5 Gsymbol/s) coherent transmission with an injection-locked homodyne detection technique,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, W1E.4.
    [Crossref]
  15. K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
    [Crossref]
  16. Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,” Opt. Express 21(23), 28290–28296 (2013).
    [Crossref] [PubMed]
  17. K. Kasai, A. Fujisaki, M. Yoshida, T. Hirooka, M. Nakazawa, and S. Masuda, “A 160 mW output, 5 kHz linewidth frequency-stabilized erbium silica fiber laser with a short cavity configuration,” in Proceedings of the Conf. on Lasers and Electro-Optics (CLEO), San Jose, 2014, SW1N.4.
    [Crossref]
  18. K. Kasai, M. Yoshida, and M. Nakazawa, “An acetylene (13C2H2) stabilized single-polarization fiber laser,” Electron. Comm. in Japan, Part 2 89(10), 9–17 (2006).
    [Crossref]

2015 (2)

2014 (1)

2013 (1)

2011 (1)

2007 (1)

J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, “1-Gsymbol/s 64-QAM coherent optical transmission over 150 km,” IEEE Photonics Technol. Lett. 19(9), 638–640 (2007).
[Crossref]

2006 (2)

K. Kasai, M. Yoshida, and M. Nakazawa, “An acetylene (13C2H2) stabilized single-polarization fiber laser,” Electron. Comm. in Japan, Part 2 89(10), 9–17 (2006).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Beppu, S.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

K. Kasai, S. Beppu, Y. Wang, and M. Nakazawa, “256 QAM (polarization-multiplexed, 5 Gsymbol/s) coherent transmission with an injection-locked homodyne detection technique,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, W1E.4.
[Crossref]

Bush, J.

L. Stolpner, S. Lee, S. Li, A. Mehnert, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” inProceedings of the SPIE, San Jose, 2008, 700457.
[Crossref]

Ellis, A. D.

Hongo, J.

J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, “1-Gsymbol/s 64-QAM coherent optical transmission over 150 km,” IEEE Photonics Technol. Lett. 19(9), 638–640 (2007).
[Crossref]

Ibrahim, S. K.

Kasai, K.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,” Opt. Express 22(25), 31310–31316 (2014).
[Crossref] [PubMed]

Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,” Opt. Express 21(23), 28290–28296 (2013).
[Crossref] [PubMed]

J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, “1-Gsymbol/s 64-QAM coherent optical transmission over 150 km,” IEEE Photonics Technol. Lett. 19(9), 638–640 (2007).
[Crossref]

K. Kasai, M. Yoshida, and M. Nakazawa, “An acetylene (13C2H2) stabilized single-polarization fiber laser,” Electron. Comm. in Japan, Part 2 89(10), 9–17 (2006).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

K. Kasai, S. Beppu, Y. Wang, and M. Nakazawa, “256 QAM (polarization-multiplexed, 5 Gsymbol/s) coherent transmission with an injection-locked homodyne detection technique,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, W1E.4.
[Crossref]

Kikuchi, K.

K. Kikuchi, “Coherent detection of phase-shift keying signals using digital carrier-phase estimation,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuI4.
[Crossref]

Kim, D. S. J. Y.

Lee, S.

L. Stolpner, S. Lee, S. Li, A. Mehnert, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” inProceedings of the SPIE, San Jose, 2008, 700457.
[Crossref]

Li, S.

L. Stolpner, S. Lee, S. Li, A. Mehnert, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” inProceedings of the SPIE, San Jose, 2008, 700457.
[Crossref]

Liu, Z.

Z. Liu, D. S. J. Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33(1), 34–41 (2015).
[Crossref]

Z. Liu, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM using simple optical carrier recovery,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, W4K.3.
[Crossref]

Mehnert, A.

L. Stolpner, S. Lee, S. Li, A. Mehnert, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” inProceedings of the SPIE, San Jose, 2008, 700457.
[Crossref]

Nakazawa, M.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,” Opt. Express 22(25), 31310–31316 (2014).
[Crossref] [PubMed]

Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,” Opt. Express 21(23), 28290–28296 (2013).
[Crossref] [PubMed]

J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, “1-Gsymbol/s 64-QAM coherent optical transmission over 150 km,” IEEE Photonics Technol. Lett. 19(9), 638–640 (2007).
[Crossref]

K. Kasai, M. Yoshida, and M. Nakazawa, “An acetylene (13C2H2) stabilized single-polarization fiber laser,” Electron. Comm. in Japan, Part 2 89(10), 9–17 (2006).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

K. Kasai, S. Beppu, Y. Wang, and M. Nakazawa, “256 QAM (polarization-multiplexed, 5 Gsymbol/s) coherent transmission with an injection-locked homodyne detection technique,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, W1E.4.
[Crossref]

Omiya, T.

Richardson, D. J.

Z. Liu, D. S. J. Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33(1), 34–41 (2015).
[Crossref]

Z. Liu, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM using simple optical carrier recovery,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, W4K.3.
[Crossref]

Siala, S.

L. Stolpner, S. Lee, S. Li, A. Mehnert, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” inProceedings of the SPIE, San Jose, 2008, 700457.
[Crossref]

Slavik, R.

Z. Liu, D. S. J. Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33(1), 34–41 (2015).
[Crossref]

Z. Liu, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM using simple optical carrier recovery,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, W4K.3.
[Crossref]

Stolpner, L.

L. Stolpner, S. Lee, S. Li, A. Mehnert, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” inProceedings of the SPIE, San Jose, 2008, 700457.
[Crossref]

Suzuki, A.

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Sygletos, S.

Wang, Y.

Weerasuriya, R.

Wu, D. S.

Z. Liu, D. S. J. Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33(1), 34–41 (2015).
[Crossref]

Z. Liu, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM using simple optical carrier recovery,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, W4K.3.
[Crossref]

Yoshida, M.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,” Opt. Express 22(25), 31310–31316 (2014).
[Crossref] [PubMed]

J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, “1-Gsymbol/s 64-QAM coherent optical transmission over 150 km,” IEEE Photonics Technol. Lett. 19(9), 638–640 (2007).
[Crossref]

K. Kasai, M. Yoshida, and M. Nakazawa, “An acetylene (13C2H2) stabilized single-polarization fiber laser,” Electron. Comm. in Japan, Part 2 89(10), 9–17 (2006).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Electron. Comm. in Japan, Part 2 (1)

K. Kasai, M. Yoshida, and M. Nakazawa, “An acetylene (13C2H2) stabilized single-polarization fiber laser,” Electron. Comm. in Japan, Part 2 89(10), 9–17 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, “1-Gsymbol/s 64-QAM coherent optical transmission over 150 km,” IEEE Photonics Technol. Lett. 19(9), 638–640 (2007).
[Crossref]

IEICE Electron. Express (1)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (4)

Other (10)

K. Kasai, A. Fujisaki, M. Yoshida, T. Hirooka, M. Nakazawa, and S. Masuda, “A 160 mW output, 5 kHz linewidth frequency-stabilized erbium silica fiber laser with a short cavity configuration,” in Proceedings of the Conf. on Lasers and Electro-Optics (CLEO), San Jose, 2014, SW1N.4.
[Crossref]

D. Qian, E. Ip, M. F. Huang, M. J. Li, and T. Wan, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), London, 2013, Th.1.C.5.

Z. Liu, D. S. Wu, D. J. Richardson, and R. Slavik, “Homodyne OFDM using simple optical carrier recovery,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, W4K.3.
[Crossref]

S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2012, JW2A.64.
[Crossref]

A. Albores-Mejia, T. Kaneko, E. Banno, K. Uesaka, H. Shoji, and H. Kuwatsuka, “Hardware efficient QAM16 all-optical carrier recovery using a single optically-stabilized injection-locked semiconductor laser,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Cannes, 2014, Tu.3.1.4.
[Crossref]

A. Bogris and C. Ressopoulos, “Analysis of 50 Gbaud homodyne coherent receivers relying on line-coding and injection locking in lasers,” in Proceedings of the Conf. on Lasers and Electro-Optics (CLEO), San Jose, 2014, JTh2A.11.
[Crossref]

L. Stolpner, S. Lee, S. Li, A. Mehnert, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” inProceedings of the SPIE, San Jose, 2008, 700457.
[Crossref]

Y. Wang, S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “140 Gbit/s, 128 QAM LD-based coherent transmission over 150 km with an injection-locked homodyne detection technique,” inProceedings of the Asia Communications and Photonics Conference (ACP), Shanghai, 2014, ATh1E.3.
[Crossref]

K. Kasai, S. Beppu, Y. Wang, and M. Nakazawa, “256 QAM (polarization-multiplexed, 5 Gsymbol/s) coherent transmission with an injection-locked homodyne detection technique,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, W1E.4.
[Crossref]

K. Kikuchi, “Coherent detection of phase-shift keying signals using digital carrier-phase estimation,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuI4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Experimental setup for 80 Gbit/s, 256 QAM-150 km injection-locked coherent transmission.
Fig. 2
Fig. 2 Delayed self-heterodyne spectra of fiber laser and ECLD.
Fig. 3
Fig. 3 Configuration of local fiber laser.
Fig. 4
Fig. 4 (a) Locking range characteristics of LO, (b) relationship between SSB phase noise of IF signal and injection seed power.
Fig. 5
Fig. 5 IF spectrum of beat between pilot tone and injection-locked LO in (a) 2 MHz span and, (b) SSB phase noise spectrum (10 Hz~1 MHz).
Fig. 6
Fig. 6 Optical spectra of 5 Gymbol/s, 256 QAM data and pilot tone signals (a) measured after PBC with 0.01 nm resolution bandwidth, and (b) before and after 150 km transmission with 0.1 nm resolution bandwidth.
Fig. 7
Fig. 7 Constellations for 5 Gsymbol/s, 256 QAM signal for (a) back-to-back and (b) 150 km transmissions.
Fig. 8
Fig. 8 BER characteristics of 5 Gsymbol/s, 256 QAM signal for single-pol (a) and pol-mux (b) 150 km transmission.
Fig. 9
Fig. 9 (a) Locking range characteristics of LO, (b) relationship between SSB phase noise of IF signal and injection seed power.
Fig. 10
Fig. 10 IF spectrum of beat between pilot and injection-locked LO in (a) 2 MHz span and, (b) SSB phase noise spectrum (10 Hz~1 MHz).
Fig. 11
Fig. 11 Constellations for 5 Gsymbol/s, 256 QAM signal for (a) back-to-back and (b) 150 km transmissions.
Fig. 12
Fig. 12 BER characteristics of 5 Gsymbol/s, 256 QAM signal for single-pol (a) and pol-mux (b) 150 km transmission.

Metrics