Abstract

We propose and demonstrate a novel linear-optics method for high-fidelity parabolic pulse generation with durations ranging from the picosecond to the sub-nanosecond range. This method is based on dispersion-induced frequency-to-time mapping combined with spectral shaping in order to overcome constraints of previous linear shaping approaches. Temporal waveform distortions associated with the need to satisfy a far-field condition are eliminated by use of a virtual time-lens process, which is directly implemented in the linear spectral shaping stage. Using this approach, the generated parabolic pulses are able to maintain most energy spectrum available from the input pulse frequency bandwidth, regardless of the target pulse duration, which is not anymore limited by the finest spectral resolution of the optical pulse spectrum shaper. High-quality parabolic pulses, with durations from 25ps to 400ps and output powers exceeding 4dBm before amplification, have been experimentally synthesized from a picosecond mode-locked optical source using a commercial optical pulse shaper with a frequency resolution >10GHz. In particular, we report the synthesis of full-duty cycle parabolic pulses that match up almost exactly with an ideal fitting over the entire pulse period.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses

Dat Nguyen, Mohammad Umar Piracha, Dimitrios Mandridis, and Peter J. Delfyett
Opt. Express 19(13) 12305-12311 (2011)

Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping

Amir Dezfooliyan and Andrew M. Weiner
Opt. Express 21(19) 22974-22987 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear optical fibers,” J. Opt. Soc. Am. B 10(7), 1185–1190 (1993).
    [Crossref]
  2. K. Tamura and M. Nakazawa, “Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,” Opt. Lett. 21(1), 68–70 (1996).
    [Crossref] [PubMed]
  3. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
    [Crossref] [PubMed]
  4. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10(14), 628–638 (2002).
    [Crossref] [PubMed]
  5. A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson, and D. J. Richardson, “Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing >25-W average power,” Opt. Lett. 29(17), 2073–2075 (2004).
    [Crossref] [PubMed]
  6. C. Billet, J. Dudley, N. Joly, and J. Knight, “Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm,” Opt. Express 13(9), 3236–3241 (2005).
    [Crossref] [PubMed]
  7. T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31(5), 574–576 (2006).
    [Crossref] [PubMed]
  8. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
    [Crossref] [PubMed]
  9. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32(17), 2520–2522 (2007).
    [Crossref] [PubMed]
  10. D. Krcmarík, R. Slavík, Y. Park, and J. Azaña, “Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter,” Opt. Express 17(9), 7074–7087 (2009).
    [Crossref] [PubMed]
  11. Y. Ozeki, Y. Takushima, K. Aiso, and K. Kikuchi, “High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources,” IEICE Trans. Electron. 88(5), 904–911 (2005).
    [Crossref]
  12. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
    [Crossref] [PubMed]
  13. J. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12(13), 3025–3034 (2004).
    [Crossref] [PubMed]
  14. C. Finot and G. Millot, “Synthesis of optical pulses by use of similaritons,” Opt. Express 12(21), 5104–5109 (2004).
    [Crossref] [PubMed]
  15. E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
    [Crossref] [PubMed]
  16. J. Fatome, B. Kibler, E. R. Andresen, H. Rigneault, and C. Finot, “All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping,” Appl. Opt. 51(19), 4547–4553 (2012).
    [Crossref] [PubMed]
  17. K. Hammani, C. Finot, S. Pitois, J. Fatome, and G. Millot, “Real-time measurement of long parabolic optical similaritons,” Electron. Lett. 44(21), 1239–1240 (2008).
    [Crossref]
  18. C. Finot, G. Millot, C. Billet, and J. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
    [Crossref] [PubMed]
  19. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
    [Crossref]
  20. T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
    [Crossref]
  21. C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gbit/s wavelength converter based on similariton generation,” Opt. Lett. 30(14), 1776–1778 (2005).
    [Crossref] [PubMed]
  22. R. Maram and J. Azaña, “Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation,” Opt. Express 21(23), 28824–28835 (2013).
    [Crossref] [PubMed]
  23. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29(5), 498–500 (2004).
    [Crossref] [PubMed]
  24. A. I. Latkin, S. K. Turitsyn, and A. A. Sysoliatin, “Theory of parabolic pulse generation in tapered fiber,” Opt. Lett. 32(4), 331–333 (2007).
    [Crossref] [PubMed]
  25. S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94(2), 227–232 (2009).
    [Crossref]
  26. T. Hirooka, M. Nakazawa, and K. Okamoto, “Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating,” Opt. Lett. 33(10), 1102–1104 (2008).
    [Crossref] [PubMed]
  27. D. Nguyen, M. U. Piracha, D. Mandridis, and P. J. Delfyett, “Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses,” Opt. Express 19(13), 12305–12311 (2011).
    [Crossref] [PubMed]
  28. A. Dezfooliyan and A. M. Weiner, “Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping,” Opt. Express 21(19), 22974–22987 (2013).
    [Crossref] [PubMed]
  29. J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
    [Crossref]
  30. V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Dispersion requirements in coherent frequency-to-time mapping,” Opt. Express 19(24), 24718–24729 (2011).
    [Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (3)

2009 (2)

D. Krcmarík, R. Slavík, Y. Park, and J. Azaña, “Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter,” Opt. Express 17(9), 7074–7087 (2009).
[Crossref] [PubMed]

S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94(2), 227–232 (2009).
[Crossref]

2008 (3)

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

K. Hammani, C. Finot, S. Pitois, J. Fatome, and G. Millot, “Real-time measurement of long parabolic optical similaritons,” Electron. Lett. 44(21), 1239–1240 (2008).
[Crossref]

T. Hirooka, M. Nakazawa, and K. Okamoto, “Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating,” Opt. Lett. 33(10), 1102–1104 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (4)

2005 (3)

2004 (4)

2003 (1)

2002 (1)

2000 (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

1996 (1)

1993 (1)

Aiso, K.

Y. Ozeki, Y. Takushima, K. Aiso, and K. Kikuchi, “High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources,” IEICE Trans. Electron. 88(5), 904–911 (2005).
[Crossref]

Anderson, D.

Andresen, E. R.

Azana, J.

J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

Azaña, J.

Billet, C.

Clausnitzer, T.

Cormier, E.

Delfyett, P. J.

Desaix, M.

Dezfooliyan, A.

Druon, F.

Dudley, J.

Dudley, J. M.

E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
[Crossref] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Dupriez, P.

Fatome, J.

J. Fatome, B. Kibler, E. R. Andresen, H. Rigneault, and C. Finot, “All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping,” Appl. Opt. 51(19), 4547–4553 (2012).
[Crossref] [PubMed]

K. Hammani, C. Finot, S. Pitois, J. Fatome, and G. Millot, “Real-time measurement of long parabolic optical similaritons,” Electron. Lett. 44(21), 1239–1240 (2008).
[Crossref]

Feder, K.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Finot, C.

J. Fatome, B. Kibler, E. R. Andresen, H. Rigneault, and C. Finot, “All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping,” Appl. Opt. 51(19), 4547–4553 (2012).
[Crossref] [PubMed]

E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
[Crossref] [PubMed]

K. Hammani, C. Finot, S. Pitois, J. Fatome, and G. Millot, “Real-time measurement of long parabolic optical similaritons,” Electron. Lett. 44(21), 1239–1240 (2008).
[Crossref]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[Crossref] [PubMed]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[Crossref] [PubMed]

C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gbit/s wavelength converter based on similariton generation,” Opt. Lett. 30(14), 1776–1778 (2005).
[Crossref] [PubMed]

C. Finot and G. Millot, “Synthesis of optical pulses by use of similaritons,” Opt. Express 12(21), 5104–5109 (2004).
[Crossref] [PubMed]

C. Finot, G. Millot, C. Billet, and J. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
[Crossref] [PubMed]

Foreman, H. D.

Fuchs, H.

Furusawa, K.

Georges, P.

Hammani, K.

K. Hammani, C. Finot, S. Pitois, J. Fatome, and G. Millot, “Real-time measurement of long parabolic optical similaritons,” Electron. Lett. 44(21), 1239–1240 (2008).
[Crossref]

Hanna, M.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Hirooka, T.

Ibsen, M.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
[Crossref]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[Crossref] [PubMed]

Jeong, Y.

Joly, N.

Karlsson, M.

Kibler, B.

Kikuchi, K.

Y. Ozeki, Y. Takushima, K. Aiso, and K. Kikuchi, “High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources,” IEICE Trans. Electron. 88(5), 904–911 (2005).
[Crossref]

Kley, E.

Knight, J.

Krcmarík, D.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Latkin, A. I.

Leaird, D. E.

Limpert, J.

Lisak, M.

Luo, A.

S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94(2), 227–232 (2009).
[Crossref]

Malinowski, A.

Mandridis, D.

Maram, R.

Millot, G.

Mottay, E.

Mukasa, K.

Muriel, M. A.

J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

Nakazawa, M.

Ng, T. T.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

Nguyen, D.

Nicholson, J.

Nielsen, C. K.

Nilsson, J.

Okamoto, K.

Oron, D.

Ortac, B.

Ozeki, Y.

Y. Ozeki, Y. Takushima, K. Aiso, and K. Kikuchi, “High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources,” IEICE Trans. Electron. 88(5), 904–911 (2005).
[Crossref]

Papadopoulos, D. N.

Park, Y.

Parmigiani, F.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
[Crossref]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[Crossref] [PubMed]

Petropoulos, P.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
[Crossref]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[Crossref] [PubMed]

Piper, A.

Piracha, M. U.

Pitois, S.

K. Hammani, C. Finot, S. Pitois, J. Fatome, and G. Millot, “Real-time measurement of long parabolic optical similaritons,” Electron. Lett. 44(21), 1239–1240 (2008).
[Crossref]

C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gbit/s wavelength converter based on similariton generation,” Opt. Lett. 30(14), 1776–1778 (2005).
[Crossref] [PubMed]

Price, J. H. V.

Quiroga-Teixeiro, M. L.

Richardson, D. J.

Rigneault, H.

Roelens, M. A. F.

Sahu, J. K.

Schreiber, T.

Slavík, R.

Sysoliatin, A. A.

Takushima, Y.

Y. Ozeki, Y. Takushima, K. Aiso, and K. Kikuchi, “High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources,” IEICE Trans. Electron. 88(5), 904–911 (2005).
[Crossref]

Tamura, K.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Torres-Company, V.

Tropper, A. C.

Tünnermann, A.

Turitsyn, S. K.

Weiner, A. M.

Westbrook, P.

Wilcox, K. G.

Yablon, A.

Yan, M.

Zaouter, Y.

Zellmer, H.

Zhang, S.

S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94(2), 227–232 (2009).
[Crossref]

Zhang, Z.

S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94(2), 227–232 (2009).
[Crossref]

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

Zhao, G.

S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94(2), 227–232 (2009).
[Crossref]

Zöllner, K.

Appl. Opt. (1)

Appl. Phys. B (1)

S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94(2), 227–232 (2009).
[Crossref]

Electron. Lett. (1)

K. Hammani, C. Finot, S. Pitois, J. Fatome, and G. Millot, “Real-time measurement of long parabolic optical similaritons,” Electron. Lett. 44(21), 1239–1240 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
[Crossref]

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

IEICE Trans. Electron. (1)

Y. Ozeki, Y. Takushima, K. Aiso, and K. Kikuchi, “High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources,” IEICE Trans. Electron. 88(5), 904–911 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (12)

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10(14), 628–638 (2002).
[Crossref] [PubMed]

C. Billet, J. Dudley, N. Joly, and J. Knight, “Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm,” Opt. Express 13(9), 3236–3241 (2005).
[Crossref] [PubMed]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[Crossref] [PubMed]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[Crossref] [PubMed]

J. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12(13), 3025–3034 (2004).
[Crossref] [PubMed]

C. Finot and G. Millot, “Synthesis of optical pulses by use of similaritons,” Opt. Express 12(21), 5104–5109 (2004).
[Crossref] [PubMed]

C. Finot, G. Millot, C. Billet, and J. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
[Crossref] [PubMed]

V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Dispersion requirements in coherent frequency-to-time mapping,” Opt. Express 19(24), 24718–24729 (2011).
[Crossref] [PubMed]

D. Nguyen, M. U. Piracha, D. Mandridis, and P. J. Delfyett, “Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses,” Opt. Express 19(13), 12305–12311 (2011).
[Crossref] [PubMed]

A. Dezfooliyan and A. M. Weiner, “Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping,” Opt. Express 21(19), 22974–22987 (2013).
[Crossref] [PubMed]

R. Maram and J. Azaña, “Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation,” Opt. Express 21(23), 28824–28835 (2013).
[Crossref] [PubMed]

D. Krcmarík, R. Slavík, Y. Park, and J. Azaña, “Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter,” Opt. Express 17(9), 7074–7087 (2009).
[Crossref] [PubMed]

Opt. Lett. (9)

T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29(5), 498–500 (2004).
[Crossref] [PubMed]

A. I. Latkin, S. K. Turitsyn, and A. A. Sysoliatin, “Theory of parabolic pulse generation in tapered fiber,” Opt. Lett. 32(4), 331–333 (2007).
[Crossref] [PubMed]

T. Hirooka, M. Nakazawa, and K. Okamoto, “Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating,” Opt. Lett. 33(10), 1102–1104 (2008).
[Crossref] [PubMed]

C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gbit/s wavelength converter based on similariton generation,” Opt. Lett. 30(14), 1776–1778 (2005).
[Crossref] [PubMed]

E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
[Crossref] [PubMed]

D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32(17), 2520–2522 (2007).
[Crossref] [PubMed]

T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31(5), 574–576 (2006).
[Crossref] [PubMed]

A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson, and D. J. Richardson, “Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing >25-W average power,” Opt. Lett. 29(17), 2073–2075 (2004).
[Crossref] [PubMed]

K. Tamura and M. Nakazawa, “Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,” Opt. Lett. 21(1), 68–70 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Dispersion-induced frequency-to-time mapping in a linear second-order dispersive medium.
Fig. 2
Fig. 2 Numerical results on the synthesis of a 100-ps parabolic pulse from a Gaussian pulse with an intensity FWHM of ~2 ps: Spectra before and after the spectral shaping stage, and numerically calculated output temporal waveforms for the direct spectral shaping ((a), (d)), FF-FTM ((b), (e)), and NF-FTM ((c), (f)) approaches. (a)-(c) black solid lines are the desired spectra after the spectral shaping stage and red dashed lines are for the initial spectrum of the input Gaussian pulse. (d)-(f) red dashed lines are for the ideal parabola fitting and black solid lines are the generated parabolic pulses.
Fig. 3
Fig. 3 NF-FTM by using a time lens. The time lens is virtually implemented in the linear spectral shaping stage.
Fig. 4
Fig. 4 Experimental setup used for parabolic pulse generation. A polarization controller (PC) was used to adjust the polarization state, as needed for operating the temporal diagnostic (nonlinear optical sampling oscilloscope).
Fig. 5
Fig. 5 Measured input pulse spectrum (a) and output spectrum of the 400 ps duration parabolic pulse after the pulse shaper (b), and generated temporal intensity profiles, plotted on a logarithmic scale (c) and a linear scale (d): Red dashed lines are for an ideal parabola fitting and black solid lines are the experimentally generated parabolic pulses.
Fig. 6
Fig. 6 Measured input pulse spectrum (a) and output spectrum of the 100-ps duration parabolic pulse after the pulse shaper (b), and generated temporal intensity profiles plotted on a logarithmic scale (c) and a linear scale (d): Red dashed lines are for an ideal parabola fitting and black solid lines are the experimentally generated parabolic pulses.
Fig. 7
Fig. 7 Measured input pulse spectrum (a) and output spectrum of the 50-ps duration parabolic pulse after the pulse shaper (b), and generated temporal intensity profiles plotted on a logarithmic scale (c) and a linear scale (d): Red dashed lines are for an ideal parabola fitting and black solid lines are the experimentally generated parabolic pulses.
Fig. 8
Fig. 8 Output spectrum of parabolic pulses generated by using a direct spectral shaping approach (a) and NF-FTM (b). The corresponding generated temporal intensity profiles are plotted on a logarithmic scale (c), (d) and a linear scale (e), (f): Red dashed lines are for an ideal parabola fitting and black solid lines are the experimentally generated parabolic pulses.
Fig. 9
Fig. 9 Comparison of the direct spectral shaping, NF-FTM, and FF-FTM approaches, according to the target pulse duration from a fixed input pulse source.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

a out (t)Cexp( j 2 Φ ¨ t 2 ) a in (τ) exp( j 2 Φ ¨ τ 2 )exp( j Φ ¨ τt )dτ
a out (t)Cexp( j 2 Φ ¨ t 2 ) a in (τ) exp( j Φ ¨ τt )dτ=Cexp( j 2 Φ ¨ t 2 ){ A in (ω) | ω=t/ Φ ¨ }
| Φ ¨ | Δ τ 0 2 8π TB P 2 π 2Δ ω 2
Δ t 0 =| Φ ¨ |Δω
Δ t 0 TB P 2 π 2Δω
a in '(t)= a in (t)exp( j 2 Φ ¨ t 2 ).
Δ f TL = 1 2π δϕ δt = T 2π Φ ¨

Metrics