Abstract

We present an avalanche photodiode (APD) with high-speed, high-responsivity and high-linearity operation to cope with higher order modulation format, such as pulse-amplitude modulation (PAM). A hybrid absorber configuration with thin depleted region which we newly employed successfully eliminates the space charge effect in the APD while maintaining high responsivity and operating speed. The fabricated APD shows an improved optical-input-electrical-output linearity for an optical input power over −8 dBm, and an optical receiver with this APD achieves both an error-free operation with a KP4 FEC and a high sensitivity of −17 dBm against a 28-Gbaud PAM4 signal.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

Nicholas J. D. Martinez, Christopher T. Derose, Reinhard W. Brock, Andrew L. Starbuck, Andrew T. Pomerene, Anthony L. Lentine, Douglas C. Trotter, and Paul S. Davids
Opt. Express 24(17) 19072-19081 (2016)

25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching

Masahiro Nada, Makoto Nakamura, and Hideaki Matsuzaki
Opt. Express 22(1) 443-449 (2014)

50-Gbit/s vertical illumination avalanche photodiode for 400-Gbit/s Ethernet systems

Masahiro Nada, Haruki Yokoyama, Yoshifumi Muramoto, Tadao Ishibashi, and Hideaki Matsuzaki
Opt. Express 22(12) 14681-14687 (2014)

References

  • View by:
  • |
  • |
  • |

  1. http://www.ieee802.org/3/bs/ .
  2. http://www.ieee802.org/3/400GSG/
  3. K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “56-Gb/s Direct modulation in InGaAlAs BH-DFC lasers at 55 °C,” in Proceedings of OFC2014, Th3A.1 (2014).
  4. W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
    [Crossref]
  5. M. Nada, H. Yokoyama, Y. Muramoto, T. Ishibashi, and H. Matsuzaki, “50-Gbit/s vertical illumination avalanche photodiode for 400-Gbit/s Ethernet systems,” Opt. Express 22(12), 14681–14687 (2014).
    [Crossref] [PubMed]
  6. K. Zhong, W. Chen, Q. Sui, J. Man, A. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Proceedings of OFC2015, Th3A.3 (2015).
    [Crossref]
  7. M. Traverso, M. Mazzini, M. Webster, C. Muzio, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, J. Stayt, C. Togami, T. Daugherty, and K. Yanushefski, 25Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Proceedings of OFC2015, Th5B.3 (2015).
  8. T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Proceedings of OFC2014, M2I.1 (2014).
    [Crossref]
  9. A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photonics Technol. Lett. 20(14), 1219–1221 (2008).
    [Crossref]
  10. W. Sun, Y. Fu, Z. Lu, and J. C. Campbell, “Study of bandwidth enhancement and non-linear behavior in avalanche photodiodes under high power condition,” J. Appl. Phys. 113(4), 044509 (2013).
    [Crossref]
  11. T. Kagawa, Y. Kawamura, and H. Iwamura, “Saturation of multiplication factor in InGaAsP/InAlAs superlattice avalanche photodiodes,” Appl. Phys. Lett. 62(10), 1122 (1993).
    [Crossref]
  12. M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa avalanche photodiode with inverted p-down structure for reliability and stability,” J. Lightwave Technol. 32(8), 1543–1548 (2014).
    [Crossref]
  13. W. Kobayashi, T. Fujisawa, T. Ito, S Kanazawa, Y. Ueda, and H. Sanjoh, “Advantages of EADFB laser for 25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fiber transmission,” Electron. Lett. 50, 683 (2014).
    [Crossref]
  14. J. Man, W. Chen, X. Song, and L. Zeng, “A low-cost 100GE optical transceiver module for 2km SMF interconnect with PAM4 modulation,” in Proceedings in OFC2014, M2E.7 (2014).
  15. http://www.ieee802.org/3/bs/public/14_11/parthasarathy_3bs_01a_1114.pdf .

2014 (3)

2013 (2)

W. Sun, Y. Fu, Z. Lu, and J. C. Campbell, “Study of bandwidth enhancement and non-linear behavior in avalanche photodiodes under high power condition,” J. Appl. Phys. 113(4), 044509 (2013).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

2008 (1)

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photonics Technol. Lett. 20(14), 1219–1221 (2008).
[Crossref]

1993 (1)

T. Kagawa, Y. Kawamura, and H. Iwamura, “Saturation of multiplication factor in InGaAsP/InAlAs superlattice avalanche photodiodes,” Appl. Phys. Lett. 62(10), 1122 (1993).
[Crossref]

Beling, A.

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photonics Technol. Lett. 20(14), 1219–1221 (2008).
[Crossref]

Campbell, J. C.

W. Sun, Y. Fu, Z. Lu, and J. C. Campbell, “Study of bandwidth enhancement and non-linear behavior in avalanche photodiodes under high power condition,” J. Appl. Phys. 113(4), 044509 (2013).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photonics Technol. Lett. 20(14), 1219–1221 (2008).
[Crossref]

Chen, H.

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photonics Technol. Lett. 20(14), 1219–1221 (2008).
[Crossref]

Fu, Y.

W. Sun, Y. Fu, Z. Lu, and J. C. Campbell, “Study of bandwidth enhancement and non-linear behavior in avalanche photodiodes under high power condition,” J. Appl. Phys. 113(4), 044509 (2013).
[Crossref]

Fujisawa, T.

W. Kobayashi, T. Fujisawa, T. Ito, S Kanazawa, Y. Ueda, and H. Sanjoh, “Advantages of EADFB laser for 25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fiber transmission,” Electron. Lett. 50, 683 (2014).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Ishibashi, T.

Ito, T.

W. Kobayashi, T. Fujisawa, T. Ito, S Kanazawa, Y. Ueda, and H. Sanjoh, “Advantages of EADFB laser for 25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fiber transmission,” Electron. Lett. 50, 683 (2014).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Iwamura, H.

T. Kagawa, Y. Kawamura, and H. Iwamura, “Saturation of multiplication factor in InGaAsP/InAlAs superlattice avalanche photodiodes,” Appl. Phys. Lett. 62(10), 1122 (1993).
[Crossref]

Kagawa, T.

T. Kagawa, Y. Kawamura, and H. Iwamura, “Saturation of multiplication factor in InGaAsP/InAlAs superlattice avalanche photodiodes,” Appl. Phys. Lett. 62(10), 1122 (1993).
[Crossref]

Kanazawa, S

W. Kobayashi, T. Fujisawa, T. Ito, S Kanazawa, Y. Ueda, and H. Sanjoh, “Advantages of EADFB laser for 25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fiber transmission,” Electron. Lett. 50, 683 (2014).
[Crossref]

Kawamura, Y.

T. Kagawa, Y. Kawamura, and H. Iwamura, “Saturation of multiplication factor in InGaAsP/InAlAs superlattice avalanche photodiodes,” Appl. Phys. Lett. 62(10), 1122 (1993).
[Crossref]

Kobayashi, W.

W. Kobayashi, T. Fujisawa, T. Ito, S Kanazawa, Y. Ueda, and H. Sanjoh, “Advantages of EADFB laser for 25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fiber transmission,” Electron. Lett. 50, 683 (2014).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Kohtoku, M.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Kurosaki, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Lu, Z.

W. Sun, Y. Fu, Z. Lu, and J. C. Campbell, “Study of bandwidth enhancement and non-linear behavior in avalanche photodiodes under high power condition,” J. Appl. Phys. 113(4), 044509 (2013).
[Crossref]

Matsuzaki, H.

Muramoto, Y.

Nada, M.

Pan, H.

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photonics Technol. Lett. 20(14), 1219–1221 (2008).
[Crossref]

Sanjo, H.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Sanjoh, H.

W. Kobayashi, T. Fujisawa, T. Ito, S Kanazawa, Y. Ueda, and H. Sanjoh, “Advantages of EADFB laser for 25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fiber transmission,” Electron. Lett. 50, 683 (2014).
[Crossref]

Shibata, Y.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Sun, W.

W. Sun, Y. Fu, Z. Lu, and J. C. Campbell, “Study of bandwidth enhancement and non-linear behavior in avalanche photodiodes under high power condition,” J. Appl. Phys. 113(4), 044509 (2013).
[Crossref]

Tadokoro, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Ueda, Y.

W. Kobayashi, T. Fujisawa, T. Ito, S Kanazawa, Y. Ueda, and H. Sanjoh, “Advantages of EADFB laser for 25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fiber transmission,” Electron. Lett. 50, 683 (2014).
[Crossref]

Yamanaka, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Yokoyama, H.

Appl. Phys. Lett. (1)

T. Kagawa, Y. Kawamura, and H. Iwamura, “Saturation of multiplication factor in InGaAsP/InAlAs superlattice avalanche photodiodes,” Appl. Phys. Lett. 62(10), 1122 (1993).
[Crossref]

Electron. Lett. (1)

W. Kobayashi, T. Fujisawa, T. Ito, S Kanazawa, Y. Ueda, and H. Sanjoh, “Advantages of EADFB laser for 25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fiber transmission,” Electron. Lett. 50, 683 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjo, “50-Gb/s direct modulation of a 1.3-um InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photonics Technol. Lett. 20(14), 1219–1221 (2008).
[Crossref]

J. Appl. Phys. (1)

W. Sun, Y. Fu, Z. Lu, and J. C. Campbell, “Study of bandwidth enhancement and non-linear behavior in avalanche photodiodes under high power condition,” J. Appl. Phys. 113(4), 044509 (2013).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (8)

J. Man, W. Chen, X. Song, and L. Zeng, “A low-cost 100GE optical transceiver module for 2km SMF interconnect with PAM4 modulation,” in Proceedings in OFC2014, M2E.7 (2014).

http://www.ieee802.org/3/bs/public/14_11/parthasarathy_3bs_01a_1114.pdf .

http://www.ieee802.org/3/bs/ .

http://www.ieee802.org/3/400GSG/

K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “56-Gb/s Direct modulation in InGaAlAs BH-DFC lasers at 55 °C,” in Proceedings of OFC2014, Th3A.1 (2014).

K. Zhong, W. Chen, Q. Sui, J. Man, A. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Proceedings of OFC2015, Th3A.3 (2015).
[Crossref]

M. Traverso, M. Mazzini, M. Webster, C. Muzio, S. Anderson, P.-C. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, J. Stayt, C. Togami, T. Daugherty, and K. Yanushefski, 25Gbaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” in Proceedings of OFC2015, Th5B.3 (2015).

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete multi-tone for 100 Gb/s optical access networks,” in Proceedings of OFC2014, M2I.1 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic band diagram of the APD when the optical input is low and (b) when it is high.
Fig. 2
Fig. 2 (a) Schematic cross-sectional view of the proposed APD. (b) Schematic band diagram of proposed APD.
Fig. 3
Fig. 3 I-V and gain-voltage characteristics of fabricated APD.
Fig. 4
Fig. 4 Optical input power dependence of linearity compression of fabricated APD for various gain conditions.
Fig. 5
Fig. 5 Output photocurrent dependence of compression of the linearity of two APDs with different thicknesses of depleted absorber.
Fig. 6
Fig. 6 Frequency characteristics of fabricated APD and its optical receiver module at M = 10.
Fig. 7
Fig. 7 Frequency characteristics of (a) fabricated APD and (b) its optical receiver module for various optical input powers.
Fig. 8
Fig. 8 Experimental setup of BER measurement for 28-Gbaud PAM4 with high-linearity APD optical receiver module.
Fig. 9
Fig. 9 BER characteristics of fabricated APD optical receiver module for 28-Gbaud PAM4 with different APD bias conditions.

Metrics