Abstract

We analyze the design of near infrared all-optical controllable and dynamically tunable multispectral Fano resonances based on subgroup decomposition of plasmonic resonances in hybrid nanoslits antenna plasmonic system. The theoretical investigation complemented with numerical simulations show that the Fano resonance lines shape can be tailored efficiently and continuously with the nanoslits geometry and the variation of the polarization states of the incident light. The subgroup decomposition of the spectral profile and the modification of plasmonic resonances lineshape that leads to the Fano-type profile of transmission is investigated and revealed. The separate contribution from individual spectral of single-slit array subgroup is attributed to the resulting overall multispectral Fano lineshape of the proposed T-shaped slits array at their corresponding spectral peaks zone. The polarization-selective tunability of the multispectral Fano resonances in the planar hybrid plasmonic system creates new avenues for designing multi-channel multi-wavelength tunable Fano effect.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Fano resonance properties of gold nanocrescent arrays

Zhongwei Liao, Bingpu Zhou, Yingzhou Huang, Shunbo Li, Shuxia Wang, and Weijia Wen
Appl. Opt. 53(28) 6431-6434 (2014)

Characterization of the surface plasmon polariton band gap in an Ag/SiO2/Ag T-shaped periodical structure

Cheng-Wen Cheng, Mohammed Nadhim Abbas, Min-Hsiung Shih, and Yia-Chung Chang
Opt. Express 19(24) 23698-23705 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  2. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  3. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
    [Crossref] [PubMed]
  4. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
    [Crossref] [PubMed]
  5. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
    [Crossref] [PubMed]
  6. Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable Fano resonance in plasmonic microstructures,” Adv. Opt. Mater. 1(1), 61–67 (2013).
    [Crossref]
  7. X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20(17), 18994–18999 (2012).
    [Crossref] [PubMed]
  8. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [Crossref] [PubMed]
  9. J. Zhao, C. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. 24(35), OP247–OP252 (2012).
    [Crossref] [PubMed]
  10. A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).
    [Crossref] [PubMed]
  11. Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
    [Crossref] [PubMed]
  12. M. R. Gonçalves, A. Melikyan, H. Minassian, T. Makaryan, and O. Marti, “Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures,” Opt. Express 22(20), 24516–24529 (2014).
    [Crossref] [PubMed]
  13. Y. Moritake, Y. Kanamori, and K. Hane, “Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars,” Opt. Lett. 39(13), 4057–4060 (2014).
    [Crossref] [PubMed]
  14. N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
    [Crossref] [PubMed]
  15. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
    [Crossref] [PubMed]
  16. Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
    [Crossref] [PubMed]
  17. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4949–4956 (2011).
    [Crossref] [PubMed]
  18. F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
    [Crossref] [PubMed]
  19. B. Bai, J. Laukkanen, A. Lehmuskero, X. Li, and J. Turunen, “Polarization-selective window-mirror effect in inductive gold grids,” Phys. Rev. B 81(23), 235423 (2010).
    [Crossref]
  20. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref] [PubMed]
  21. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
    [Crossref] [PubMed]
  22. B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
    [Crossref]
  23. B. Hopkins, A. Miroshnichenko, A. N. Poddubny, and Y. Kivshar, “Fano resonance enhanced nonreciprocal absorption and scattering of light,” Photonics 2, 745 (2015).
    [Crossref]
  24. B. Hopkins, D. S. Filonov, S. B. Glybovski, and A. E. Miroshnichenko, “Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers,” Phys. Rev. B 92(4), 045433 (2015).
    [Crossref]
  25. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
    [Crossref] [PubMed]
  26. H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
    [Crossref] [PubMed]
  27. Y. B. Zhang, X. Y. Hu, Y. L. Fu, H. Yang, and Q. H. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett. 100(3), 031106 (2012).
    [Crossref]
  28. S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6(7), 6260–6271 (2012).
    [Crossref] [PubMed]
  29. W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
    [Crossref]
  30. J. Liu, B. Xu, H. Hu, J. Zhang, X. Wei, Y. Xu, and G. Song, “Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system,” Opt. Express 21(11), 13386–13393 (2013).
    [Crossref] [PubMed]
  31. M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
    [Crossref] [PubMed]
  32. J. H. Choe, J. H. Kang, D. S. Kim, and Q. H. Park, “Slot antenna as a bound charge oscillator,” Opt. Express 20(6), 6521–6526 (2012).
    [Crossref] [PubMed]
  33. C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
    [Crossref]
  34. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
    [Crossref] [PubMed]
  35. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
    [Crossref]
  36. M. Song, H. Yu, C. Wang, N. Yao, M. Pu, J. Luo, Z. Zhang, and X. Luo, “Sharp Fano resonance induced by a single layer of nanorods with perturbed periodicity,” Opt. Express 23(3), 2895–2903 (2015).
    [Crossref] [PubMed]

2015 (3)

B. Hopkins, A. Miroshnichenko, A. N. Poddubny, and Y. Kivshar, “Fano resonance enhanced nonreciprocal absorption and scattering of light,” Photonics 2, 745 (2015).
[Crossref]

B. Hopkins, D. S. Filonov, S. B. Glybovski, and A. E. Miroshnichenko, “Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers,” Phys. Rev. B 92(4), 045433 (2015).
[Crossref]

M. Song, H. Yu, C. Wang, N. Yao, M. Pu, J. Luo, Z. Zhang, and X. Luo, “Sharp Fano resonance induced by a single layer of nanorods with perturbed periodicity,” Opt. Express 23(3), 2895–2903 (2015).
[Crossref] [PubMed]

2014 (5)

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

M. R. Gonçalves, A. Melikyan, H. Minassian, T. Makaryan, and O. Marti, “Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures,” Opt. Express 22(20), 24516–24529 (2014).
[Crossref] [PubMed]

Y. Moritake, Y. Kanamori, and K. Hane, “Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars,” Opt. Lett. 39(13), 4057–4060 (2014).
[Crossref] [PubMed]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

2013 (4)

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable Fano resonance in plasmonic microstructures,” Adv. Opt. Mater. 1(1), 61–67 (2013).
[Crossref]

J. Liu, B. Xu, H. Hu, J. Zhang, X. Wei, Y. Xu, and G. Song, “Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system,” Opt. Express 21(11), 13386–13393 (2013).
[Crossref] [PubMed]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

2012 (13)

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
[Crossref] [PubMed]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

J. H. Choe, J. H. Kang, D. S. Kim, and Q. H. Park, “Slot antenna as a bound charge oscillator,” Opt. Express 20(6), 6521–6526 (2012).
[Crossref] [PubMed]

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Y. B. Zhang, X. Y. Hu, Y. L. Fu, H. Yang, and Q. H. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett. 100(3), 031106 (2012).
[Crossref]

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6(7), 6260–6271 (2012).
[Crossref] [PubMed]

X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20(17), 18994–18999 (2012).
[Crossref] [PubMed]

J. Zhao, C. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. 24(35), OP247–OP252 (2012).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

2011 (5)

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4949–4956 (2011).
[Crossref] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).
[Crossref] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

2010 (4)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

B. Bai, J. Laukkanen, A. Lehmuskero, X. Li, and J. Turunen, “Polarization-selective window-mirror effect in inductive gold grids,” Phys. Rev. B 81(23), 235423 (2010).
[Crossref]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

2007 (1)

C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
[Crossref]

2003 (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Alici, K. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).
[Crossref] [PubMed]

Alù, A.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).
[Crossref] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Bai, B.

B. Bai, J. Laukkanen, A. Lehmuskero, X. Li, and J. Turunen, “Polarization-selective window-mirror effect in inductive gold grids,” Phys. Rev. B 81(23), 235423 (2010).
[Crossref]

Braun, P. V.

J. Zhao, C. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. 24(35), OP247–OP252 (2012).
[Crossref] [PubMed]

Cao, T.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Chadha, A.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Chang, W. S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Chen, H.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Choe, J. H.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Chuwongin, S.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Cryan, M. J.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Cui, T. J.

Dabidian, N.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Dregely, D.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Fan, S. H.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Filonov, D. S.

B. Hopkins, D. S. Filonov, S. B. Glybovski, and A. E. Miroshnichenko, “Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers,” Phys. Rev. B 92(4), 045433 (2015).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

Fu, Y. H.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Fu, Y. L.

Y. B. Zhang, X. Y. Hu, Y. L. Fu, H. Yang, and Q. H. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett. 100(3), 031106 (2012).
[Crossref]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Giessen, H.

J. Zhao, C. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. 24(35), OP247–OP252 (2012).
[Crossref] [PubMed]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Glybovski, S. B.

B. Hopkins, D. S. Filonov, S. B. Glybovski, and A. E. Miroshnichenko, “Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers,” Phys. Rev. B 92(4), 045433 (2015).
[Crossref]

Gonçalves, M. R.

Gong, Q.

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable Fano resonance in plasmonic microstructures,” Adv. Opt. Mater. 1(1), 61–67 (2013).
[Crossref]

Gong, Q. H.

Y. B. Zhang, X. Y. Hu, Y. L. Fu, H. Yang, and Q. H. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett. 100(3), 031106 (2012).
[Crossref]

Halas, N. J.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Hane, K.

Hartsfield, T.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

Hong, M.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Hong, M. H.

Hopkins, B.

B. Hopkins, A. Miroshnichenko, A. N. Poddubny, and Y. Kivshar, “Fano resonance enhanced nonreciprocal absorption and scattering of light,” Photonics 2, 745 (2015).
[Crossref]

B. Hopkins, D. S. Filonov, S. B. Glybovski, and A. E. Miroshnichenko, “Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers,” Phys. Rev. B 92(4), 045433 (2015).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Hu, H.

Hu, X.

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable Fano resonance in plasmonic microstructures,” Adv. Opt. Mater. 1(1), 61–67 (2013).
[Crossref]

Hu, X. Y.

Y. B. Zhang, X. Y. Hu, Y. L. Fu, H. Yang, and Q. H. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett. 100(3), 031106 (2012).
[Crossref]

Huang, C. P.

C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
[Crossref]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Huang, Y.

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable Fano resonance in plasmonic microstructures,” Adv. Opt. Mater. 1(1), 61–67 (2013).
[Crossref]

Kanamori, Y.

Kang, J. H.

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Khatua, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Kim, D. S.

Kivshar, Y.

B. Hopkins, A. Miroshnichenko, A. N. Poddubny, and Y. Kivshar, “Fano resonance enhanced nonreciprocal absorption and scattering of light,” Photonics 2, 745 (2015).
[Crossref]

Kivshar, Y. S.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Knight, M. W.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lassiter, J. B.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Laukkanen, J.

B. Bai, J. Laukkanen, A. Lehmuskero, X. Li, and J. Turunen, “Polarization-selective window-mirror effect in inductive gold grids,” Phys. Rev. B 81(23), 235423 (2010).
[Crossref]

Le, K. Q.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Lehmuskero, A.

B. Bai, J. Laukkanen, A. Lehmuskero, X. Li, and J. Turunen, “Polarization-selective window-mirror effect in inductive gold grids,” Phys. Rev. B 81(23), 235423 (2010).
[Crossref]

Lei, D. Y.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Li, X.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

B. Bai, J. Laukkanen, A. Lehmuskero, X. Li, and J. Turunen, “Polarization-selective window-mirror effect in inductive gold grids,” Phys. Rev. B 81(23), 235423 (2010).
[Crossref]

Li, X. Y.

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6(7), 6260–6271 (2012).
[Crossref] [PubMed]

Liao, Z.

Liew, T. Y. F.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Liew, Y. F.

Lin, L.

Link, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Liu, J.

Liu, N.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

Liu, R. P.

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6(7), 6260–6271 (2012).
[Crossref] [PubMed]

Liu, S. D.

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6(7), 6260–6271 (2012).
[Crossref] [PubMed]

Liu, V.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Liu, X.-X.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Lukiyanchuk, B.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4949–4956 (2011).
[Crossref] [PubMed]

Luo, J.

Luo, X.

Ma, Z. Q.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Maier, S. A.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Makaryan, T.

Man, Y. C.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Marti, O.

Melikyan, A.

Mielczarek, W. S.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Minassian, H.

Miroshnichenko, A.

B. Hopkins, A. Miroshnichenko, A. N. Poddubny, and Y. Kivshar, “Fano resonance enhanced nonreciprocal absorption and scattering of light,” Photonics 2, 745 (2015).
[Crossref]

Miroshnichenko, A. E.

B. Hopkins, D. S. Filonov, S. B. Glybovski, and A. E. Miroshnichenko, “Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers,” Phys. Rev. B 92(4), 045433 (2015).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Monticone, F.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Moritake, Y.

Moshchalkov, V. V.

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Ng, B.

Nordlander, P.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Pan, B. C.

Park, N.

Park, Q. H.

Piao, X.

Poddubny, A. N.

B. Hopkins, A. Miroshnichenko, A. N. Poddubny, and Y. Kivshar, “Fano resonance enhanced nonreciprocal absorption and scattering of light,” Photonics 2, 745 (2015).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Pu, M.

Rahmani, M.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4949–4956 (2011).
[Crossref] [PubMed]

Ranjbar, M.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Roberts, A.

Seo, J. H.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Shafiei, F.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Shao, L.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Shen, X.

Shuai, Y. C.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Simpson, R. E.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Sobhani, H.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Song, G.

Song, M.

Swanglap, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Tavakkoli, A.

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Turunen, J.

B. Bai, J. Laukkanen, A. Lehmuskero, X. Li, and J. Turunen, “Polarization-selective window-mirror effect in inductive gold grids,” Phys. Rev. B 81(23), 235423 (2010).
[Crossref]

Van Dorpe, P.

Vandenbosch, G. A. E.

Vercruysse, D.

Verellen, N.

Vogelgesang, R.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

Wang, C.

Wang, J.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Wang, K. X.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Wang, Q. J.

C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
[Crossref]

Wei, C.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Wei, X.

Wu, C.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Xu, B.

Xu, Y.

Yang, B.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Yang, H.

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable Fano resonance in plasmonic microstructures,” Adv. Opt. Mater. 1(1), 61–67 (2013).
[Crossref]

Y. B. Zhang, X. Y. Hu, Y. L. Fu, H. Yang, and Q. H. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett. 100(3), 031106 (2012).
[Crossref]

Yang, H. J.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Yang, Z.

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6(7), 6260–6271 (2012).
[Crossref] [PubMed]

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).
[Crossref] [PubMed]

Yao, N.

Yu, H.

Yu, S.

Yu, Y. F.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Zhang, C.

J. Zhao, C. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. 24(35), OP247–OP252 (2012).
[Crossref] [PubMed]

Zhang, J.

Zhang, J. B.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Zhang, L.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Zhang, Y. B.

Y. B. Zhang, X. Y. Hu, Y. L. Fu, H. Yang, and Q. H. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett. 100(3), 031106 (2012).
[Crossref]

Zhang, Z.

Zhao, C.

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Zhao, D. Y.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Zhao, J.

J. Zhao, C. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. 24(35), OP247–OP252 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, W. D.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Zhu, Y.

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable Fano resonance in plasmonic microstructures,” Adv. Opt. Mater. 1(1), 61–67 (2013).
[Crossref]

Zhu, Y. Y.

C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
[Crossref]

ACS Nano (4)

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6(7), 6260–6271 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Zhao, C. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. 24(35), OP247–OP252 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable Fano resonance in plasmonic microstructures,” Adv. Opt. Mater. 1(1), 61–67 (2013).
[Crossref]

Appl. Phys. Lett. (1)

Y. B. Zhang, X. Y. Hu, Y. L. Fu, H. Yang, and Q. H. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett. 100(3), 031106 (2012).
[Crossref]

Nano Lett. (5)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Opt. Express (8)

M. Song, H. Yu, C. Wang, N. Yao, M. Pu, J. Luo, Z. Zhang, and X. Luo, “Sharp Fano resonance induced by a single layer of nanorods with perturbed periodicity,” Opt. Express 23(3), 2895–2903 (2015).
[Crossref] [PubMed]

J. Liu, B. Xu, H. Hu, J. Zhang, X. Wei, Y. Xu, and G. Song, “Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system,” Opt. Express 21(11), 13386–13393 (2013).
[Crossref] [PubMed]

J. H. Choe, J. H. Kang, D. S. Kim, and Q. H. Park, “Slot antenna as a bound charge oscillator,” Opt. Express 20(6), 6521–6526 (2012).
[Crossref] [PubMed]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4949–4956 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

M. R. Gonçalves, A. Melikyan, H. Minassian, T. Makaryan, and O. Marti, “Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures,” Opt. Express 22(20), 24516–24529 (2014).
[Crossref] [PubMed]

X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20(17), 18994–18999 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Photonics (1)

B. Hopkins, A. Miroshnichenko, A. N. Poddubny, and Y. Kivshar, “Fano resonance enhanced nonreciprocal absorption and scattering of light,” Photonics 2, 745 (2015).
[Crossref]

Phys. Rev. A (1)

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Phys. Rev. B (3)

B. Hopkins, D. S. Filonov, S. B. Glybovski, and A. E. Miroshnichenko, “Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers,” Phys. Rev. B 92(4), 045433 (2015).
[Crossref]

C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
[Crossref]

B. Bai, J. Laukkanen, A. Lehmuskero, X. Li, and J. Turunen, “Polarization-selective window-mirror effect in inductive gold grids,” Phys. Rev. B 81(23), 235423 (2010).
[Crossref]

Phys. Rev. Lett. (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Rep. (1)

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Small (1)

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small 8(10), 1503–1509 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic view of the proposed hybrid plasmonic system. The unit cell and the corresponding geometry parameters are shown in Fig. 1(b). The orientation of the linear polarization incident light is denoted by the angle of α.
Fig. 2
Fig. 2 (a) Calculated transmission and reflection spectra of the hybrid plasmonic system (with T = 150 nm, P = 550 nm, L1 = 300 nm, L2 = 100 nm, normal incidence) in dependence of the incident polarization angles. (b) Transmission peak values variation for peak 1and peak positions for peak 2 as a function of incident angle of polarization.
Fig. 3
Fig. 3 Calculated spatial distribution of magnetic field Hz component with normal incidence for TM polarization at the resonance wavelengths of 992 nm (a) and 1524 nm (b), TE polarization at the wavelengths of 912 nm (c), 1078 nm (d), and 1366 nm (e), corresponding to the maxima of the transmission spectra peaks positions in Fig. 2. The black lines in the figures denote the cross section of the T-shaped nanoslit unit structure. The orientation of the linearly polarized light is denoted by the red arrow and polarization angle α.
Fig. 4
Fig. 4 Transmission spectra for the subgroups system with single rectangular slits array for different orthogonal polarization states, the inset shows the unit geometry of periodic slits array antenna and the orientation of the linearly polarized light is denoted by the red arrow. Transmission spectra for the subgroups (dashed-lines) with TM polarization (a) and TE polarization states (b) are labeled with Slit_X and Slit_Y. (c) sketch of the subgroup decomposition and the spectra hybridization.
Fig. 5
Fig. 5 Transmission spectra for the proposed T-shaped nanoslits system for varied nanoslits arm lengths, TM polarization with varied arm lengths L1 (a), and TE polarization with varied arm lengths L2 (b). For different orthogonal polarization states, the subgroup with slits perpendicular to the incident polarization dominates the resonance response of the overall spectra.
Fig. 6
Fig. 6 Numerically calculated (solid lines), and Fano-profile fitted (dashed lines) transmission spectra of the sample under TM-polarized (red lines) and TE-polarized (blue lines) illuminations at normal incidence.
Fig. 7
Fig. 7 Calculated zero-order transmission spectra of the system for normal incidence and varied polarization states, RCP light (black dashed line), LCP light (gray dashed line), and the eigenstates for TM (red) and TE (blue) linear polarization incidence.
Fig. 8
Fig. 8 Calculated results of the zero order transmission spectra of the system for normal light incidence. Calculated transmission spectra contour plots in dependence of the nanoslits period for TM polarization (a) and TE polarization (b). The superimposed dashed lines are the dispersion curves of SPP and WA Bloch waves of different orders calculated for the system, respectively. The text “air” and “sub” indicate the modes on the upper air-gold and substrate gold-glass interfaces, respectively. The dispersion curves of SPP Bloch waves are plotted as the black dashed (air-gold interface) and dashed-dotted (gold-glass interface) lines. The dashed-dotted line with “sub” indicates the spectra position of the bare SPP dispersion for system without the spacer layer dielectric, which shows the guide to the eye and clue to the evolution of the spectra.

Tables (1)

Tables Icon

Table 1 Fitting parameters of the Fano-profile transmittance for TM and TE polarization cases.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T(λ)= j A j ( q j Γ j /2+λ λ res,j ) 2 (λ λ res,j ) 2 + ( Γ j /2) 2
k 0 Re[ ε m ε d /( ε m + ε d ) ]=| k 0 sinθ±i G x ±j G y |
k 0 ε d =| k 0 sinθ±i G x ±j G y |.

Metrics