Abstract

In this report, the improved lasing performance of the III-nitride based vertical-cavity surface-emitting laser (VCSEL) has been demonstrated by replacing the bulk AlGaN electron blocking layer (EBL) in the conventional VCSEL structure with an AlGaN/GaN multiple quantum barrier (MQB) EBL. The output power can be enhanced up to three times from 0.3 mW to 0.9 mW. In addition, the threshold current density of the fabricated device with the MQB-EBL was reduced from 12 kA/cm2 (9.5 mA) to 10.6 kA/cm2 (8.5 mA) compared with the use of the bulk AlGaN EBL. Theoretical calculation results suggest that the improved carrier injection efficiency can be mainly attributed to the partial release of the strain and the effect of quantum interference by using the MQB structure, hence increasing the effective barrier height of the conduction band.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Greatly enhanced performance of AlGaN-based deep ultraviolet light emitting diodes by introducing a polarization modulated electron blocking layer

J. Lang, F. J. Xu, W. K. Ge, B. Y. Liu, N. Zhang, Y. H. Sun, J. M. Wang, M. X. Wang, N. Xie, X. Z. Fang, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen
Opt. Express 27(20) A1458-A1466 (2019)

High-performance InGaN-based green light-emitting diodes with quaternary InAlGaN/GaN superlattice electron blocking layer

An-Jye Tzou, Da-Wei Lin, Chien-Rong Yu, Zhen-Yu Li, Yu-Kuang Liao, Bing-Cheng Lin, Jhih-Kai Huang, Chien-Chung Lin, Tsung Sheng Kao, Hao-Chung Kuo, and Chun-Yen Chang
Opt. Express 24(11) 11387-11395 (2016)

Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer

Bing-Chen Lin, Kuo-Ju Chen, Chao-Hsun Wang, Ching-Hsueh Chiu, Yu-Pin Lan, Chien-Chung Lin, Po-Tsung Lee, Min-Hsiung Shih, Yen-Kuang Kuo, and Hao-Chung Kuo
Opt. Express 22(1) 463-469 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
    [Crossref] [PubMed]
  2. A. A. Bergh, “Blue laser diode (LD) and light emitting diode (LED) applications,” Phys. Status Solidi A 201(12), 2740–2754 (2004).
  3. S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
    [Crossref]
  4. Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
    [Crossref]
  5. G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006).
    [Crossref]
  6. T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
    [Crossref]
  7. G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
    [Crossref]
  8. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
    [Crossref] [PubMed]
  9. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
    [Crossref]
  10. C. T. Yu, W. C. Lai, C. H. Yen, and S. J. Chang, “Effects of InGaN layer thickness of AlGaN/InGaN superlattice electron blocking layer on the overall efficiency and efficiency droops of GaN-based light emitting diodes,” Opt. Express 22(S3Suppl 3), A663–A670 (2014).
    [Crossref] [PubMed]
  11. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
    [Crossref]
  12. C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
    [Crossref]
  13. J. A. Lott and K. J. Malloy, “Orange vertical cavity surface emitting lasers,” in CLEO/Pacific Rim '95, Pacific Rim Conference on Lasers and Electro-Optics (OSA, 1995), pp. 258–259.
    [Crossref]
  14. R. B. Chung, C. Han, C. C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13), 131113 (2012).
    [Crossref]
  15. Y. Y. Zhang and Y. A. Yin, “Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer,” Appl. Phys. Lett. 99(22), 221103 (2011).
    [Crossref]
  16. Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
    [Crossref]
  17. S. J. Chang, Y. Y. Lin, C. H. Liu, S. Li, T. K. Ko, and S. J. Hon, “Numerical simulation of GaN-based LEDs with chirped multiquantum barrier structure,” IEEE J. Quantum Electron. 49(4), 436–442 (2013).
    [Crossref]
  18. T. Takagi, F. Koyama, and K. Iga, “Design of multiquantum barrier (MQB) and experimental verification of electron wave reflection by MQB,” Electron. Commun. Jpn. 75, 527–535 (1992).
  19. K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiquantum barrier (MQB),” IEEE Electron. Lett. 22(19), 1008–1010 (1986).
    [Crossref]
  20. C. S. Xia, Z. M. S. Li, Z. Q. Li, and Y. Sheng, “Effect of multiquantum barriers in performance enhancement of GaN-based light-emitting diodes,” Appl. Phys. Lett. 102(1), 013507 (2013).
    [Crossref]
  21. W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
    [Crossref] [PubMed]
  22. C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 5(9), 092104 (2012).
    [Crossref]
  23. PICS3D (Photonic Integrated Circuit Simulator in 3D) by Crosslight Software, Inc., Burnaby, Canada, (2005).

2015 (3)

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

S. J. Chang, Y. Y. Lin, C. H. Liu, S. Li, T. K. Ko, and S. J. Hon, “Numerical simulation of GaN-based LEDs with chirped multiquantum barrier structure,” IEEE J. Quantum Electron. 49(4), 436–442 (2013).
[Crossref]

C. S. Xia, Z. M. S. Li, Z. Q. Li, and Y. Sheng, “Effect of multiquantum barriers in performance enhancement of GaN-based light-emitting diodes,” Appl. Phys. Lett. 102(1), 013507 (2013).
[Crossref]

2012 (4)

Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
[Crossref]

R. B. Chung, C. Han, C. C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13), 131113 (2012).
[Crossref]

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

2011 (1)

Y. Y. Zhang and Y. A. Yin, “Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer,” Appl. Phys. Lett. 99(22), 221103 (2011).
[Crossref]

2010 (2)

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

2008 (1)

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

2007 (1)

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

2006 (1)

G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006).
[Crossref]

2004 (1)

A. A. Bergh, “Blue laser diode (LD) and light emitting diode (LED) applications,” Phys. Status Solidi A 201(12), 2740–2754 (2004).

1998 (1)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

1997 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

1992 (1)

T. Takagi, F. Koyama, and K. Iga, “Design of multiquantum barrier (MQB) and experimental verification of electron wave reflection by MQB,” Electron. Commun. Jpn. 75, 527–535 (1992).

1986 (1)

K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiquantum barrier (MQB),” IEEE Electron. Lett. 22(19), 1008–1010 (1986).
[Crossref]

Akiyama, H.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
[Crossref] [PubMed]

Bergh, A. A.

A. A. Bergh, “Blue laser diode (LD) and light emitting diode (LED) applications,” Phys. Status Solidi A 201(12), 2740–2754 (2004).

Cai, Z. P.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
[Crossref] [PubMed]

Carlin, J. F.

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Castiglia, A.

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Chang, L.

G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006).
[Crossref]

Chang, S. J.

C. T. Yu, W. C. Lai, C. H. Yen, and S. J. Chang, “Effects of InGaN layer thickness of AlGaN/InGaN superlattice electron blocking layer on the overall efficiency and efficiency droops of GaN-based light emitting diodes,” Opt. Express 22(S3Suppl 3), A663–A670 (2014).
[Crossref] [PubMed]

S. J. Chang, Y. Y. Lin, C. H. Liu, S. Li, T. K. Ko, and S. J. Hon, “Numerical simulation of GaN-based LEDs with chirped multiquantum barrier structure,” IEEE J. Quantum Electron. 49(4), 436–442 (2013).
[Crossref]

Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
[Crossref]

Chang, S. P.

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

Chang, W. T.

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

Chen, C. H.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Chen, C. K.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Chen, H. Y.

Chen, S. Q.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
[Crossref] [PubMed]

Chen, S. W.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Chi, Y. C.

Chuang, R. W.

Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
[Crossref]

Chung, R. B.

R. B. Chung, C. Han, C. C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13), 131113 (2012).
[Crossref]

Cosendey, G.

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Dai, Q.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

DenBaars, S. P.

R. B. Chung, C. Han, C. C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13), 131113 (2012).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Feezell, D.

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Fuutagawa, N.

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

Grandjean, N.

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Hamaguchi, T.

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

Han, C.

R. B. Chung, C. Han, C. C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13), 131113 (2012).
[Crossref]

Higuchi, Y.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Holder, C.

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Hon, S. J.

S. J. Chang, Y. Y. Lin, C. H. Liu, S. Li, T. K. Ko, and S. J. Hon, “Numerical simulation of GaN-based LEDs with chirped multiquantum barrier structure,” IEEE J. Quantum Electron. 49(4), 436–442 (2013).
[Crossref]

Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
[Crossref]

Hsieh, D. H.

Hu, X. L.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
[Crossref] [PubMed]

Huang, G. S.

G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006).
[Crossref]

Iga, K.

T. Takagi, F. Koyama, and K. Iga, “Design of multiquantum barrier (MQB) and experimental verification of electron wave reflection by MQB,” Electron. Commun. Jpn. 75, 527–535 (1992).

K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiquantum barrier (MQB),” IEEE Electron. Lett. 22(19), 1008–1010 (1986).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Izumi, S.

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

Jiao, Z. Y.

Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
[Crossref]

Ke, C. C.

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

Kim, J. K.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Kim, M. H.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Ko, T. K.

S. J. Chang, Y. Y. Lin, C. H. Liu, S. Li, T. K. Ko, and S. J. Hon, “Numerical simulation of GaN-based LEDs with chirped multiquantum barrier structure,” IEEE J. Quantum Electron. 49(4), 436–442 (2013).
[Crossref]

Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
[Crossref]

Koyama, F.

T. Takagi, F. Koyama, and K. Iga, “Design of multiquantum barrier (MQB) and experimental verification of electron wave reflection by MQB,” Electron. Commun. Jpn. 75, 527–535 (1992).

K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiquantum barrier (MQB),” IEEE Electron. Lett. 22(19), 1008–1010 (1986).
[Crossref]

Kuo, H. C.

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006).
[Crossref]

Kuramoto, M.

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

Lai, W. C.

Lee, C. Y.

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

Li, J. C.

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

Li, S.

S. J. Chang, Y. Y. Lin, C. H. Liu, S. Li, T. K. Ko, and S. J. Hon, “Numerical simulation of GaN-based LEDs with chirped multiquantum barrier structure,” IEEE J. Quantum Electron. 49(4), 436–442 (2013).
[Crossref]

Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
[Crossref]

Li, Z. M. S.

C. S. Xia, Z. M. S. Li, Z. Q. Li, and Y. Sheng, “Effect of multiquantum barriers in performance enhancement of GaN-based light-emitting diodes,” Appl. Phys. Lett. 102(1), 013507 (2013).
[Crossref]

Li, Z. Q.

C. S. Xia, Z. M. S. Li, Z. Q. Li, and Y. Sheng, “Effect of multiquantum barriers in performance enhancement of GaN-based light-emitting diodes,” Appl. Phys. Lett. 102(1), 013507 (2013).
[Crossref]

Li, Z. Y.

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Lin, C. W.

G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006).
[Crossref]

Lin, G. R.

Lin, Y. Y.

S. J. Chang, Y. Y. Lin, C. H. Liu, S. Li, T. K. Ko, and S. J. Hon, “Numerical simulation of GaN-based LEDs with chirped multiquantum barrier structure,” IEEE J. Quantum Electron. 49(4), 436–442 (2013).
[Crossref]

Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
[Crossref]

Liu, C. H.

S. J. Chang, Y. Y. Lin, C. H. Liu, S. Li, T. K. Ko, and S. J. Hon, “Numerical simulation of GaN-based LEDs with chirped multiquantum barrier structure,” IEEE J. Quantum Electron. 49(4), 436–442 (2013).
[Crossref]

Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
[Crossref]

Liu, W. J.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
[Crossref] [PubMed]

Lu, T. C.

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006).
[Crossref]

Matsumura, H.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Mukai, T.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Murayama, M.

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Nakamura, S.

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

R. B. Chung, C. Han, C. C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13), 131113 (2012).
[Crossref]

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Narui, H.

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

Omae, K.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Pan, C. C.

R. B. Chung, C. Han, C. C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13), 131113 (2012).
[Crossref]

Park, Y.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Pfaff, N.

R. B. Chung, C. Han, C. C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13), 131113 (2012).
[Crossref]

Piprek, J.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Rossbach, G.

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

Schubert, E. F.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Schubert, M. F.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Sheng, Y.

C. S. Xia, Z. M. S. Li, Z. Q. Li, and Y. Sheng, “Effect of multiquantum barriers in performance enhancement of GaN-based light-emitting diodes,” Appl. Phys. Lett. 102(1), 013507 (2013).
[Crossref]

Speck, J. S.

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

R. B. Chung, C. Han, C. C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13), 131113 (2012).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Takagi, T.

T. Takagi, F. Koyama, and K. Iga, “Design of multiquantum barrier (MQB) and experimental verification of electron wave reflection by MQB,” Electron. Commun. Jpn. 75, 527–535 (1992).

Tsai, C. T.

Tu, P. M.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Uenohara, H.

K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiquantum barrier (MQB),” IEEE Electron. Lett. 22(19), 1008–1010 (1986).
[Crossref]

Wang, C. H.

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

Wang, S. C.

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006).
[Crossref]

Wu, T. T.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Xia, C. S.

C. S. Xia, Z. M. S. Li, Z. Q. Li, and Y. Sheng, “Effect of multiquantum barriers in performance enhancement of GaN-based light-emitting diodes,” Appl. Phys. Lett. 102(1), 013507 (2013).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

Yang, H. C.

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

Yao, H. H.

G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006).
[Crossref]

Yen, C. H.

Yin, Y. A.

Y. Y. Zhang and Y. A. Yin, “Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer,” Appl. Phys. Lett. 99(22), 221103 (2011).
[Crossref]

Ying, L. Y.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
[Crossref] [PubMed]

Yu, C. T.

Zhang, B. P.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
[Crossref] [PubMed]

Zhang, J. Y.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
[Crossref] [PubMed]

Zhang, Y. Y.

Y. Y. Zhang and Y. A. Yin, “Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer,” Appl. Phys. Lett. 99(22), 221103 (2011).
[Crossref]

Appl. Phys. Express (3)

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Appl. Phys. Lett. (9)

G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C. W. Lin, and L. Chang, “Crack-free GaN/AlN distributed bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

G. Cosendey, A. Castiglia, G. Rossbach, J. F. Carlin, and N. Grandjean, “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101(15), 151113 (2012).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26), 261103 (2010).
[Crossref]

R. B. Chung, C. Han, C. C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13), 131113 (2012).
[Crossref]

Y. Y. Zhang and Y. A. Yin, “Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer,” Appl. Phys. Lett. 99(22), 221103 (2011).
[Crossref]

C. S. Xia, Z. M. S. Li, Z. Q. Li, and Y. Sheng, “Effect of multiquantum barriers in performance enhancement of GaN-based light-emitting diodes,” Appl. Phys. Lett. 102(1), 013507 (2013).
[Crossref]

Electron. Commun. Jpn. (1)

T. Takagi, F. Koyama, and K. Iga, “Design of multiquantum barrier (MQB) and experimental verification of electron wave reflection by MQB,” Electron. Commun. Jpn. 75, 527–535 (1992).

IEEE Electron. Lett. (1)

K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiquantum barrier (MQB),” IEEE Electron. Lett. 22(19), 1008–1010 (1986).
[Crossref]

IEEE J. Quantum Electron. (1)

S. J. Chang, Y. Y. Lin, C. H. Liu, S. Li, T. K. Ko, and S. J. Hon, “Numerical simulation of GaN-based LEDs with chirped multiquantum barrier structure,” IEEE J. Quantum Electron. 49(4), 436–442 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Y. Lin, R. W. Chuang, S. J. Chang, S. Li, Z. Y. Jiao, T. K. Ko, S. J. Hon, and C. H. Liu, “GaN-based LEDs with a chirped multiquantum barrier structure,” IEEE Photonics Technol. Lett. 24(18), 1600–1602 (2012).
[Crossref]

Opt. Express (2)

Phys. Status Solidi A (1)

A. A. Bergh, “Blue laser diode (LD) and light emitting diode (LED) applications,” Phys. Status Solidi A 201(12), 2740–2754 (2004).

Sci. Rep. (1)

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5, 9600 (2015).
[Crossref] [PubMed]

Science (1)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

Other (2)

J. A. Lott and K. J. Malloy, “Orange vertical cavity surface emitting lasers,” in CLEO/Pacific Rim '95, Pacific Rim Conference on Lasers and Electro-Optics (OSA, 1995), pp. 258–259.
[Crossref]

PICS3D (Photonic Integrated Circuit Simulator in 3D) by Crosslight Software, Inc., Burnaby, Canada, (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic structure of GaN-based VCSEL with AlGaN bulk EBL (C-VCSEL) and AlGaN/GaN MQB EBL (MQB-VCSEL)
Fig. 2
Fig. 2 Band diagram of the GaN-based VCSEL structures with (a) conventional bulk Al0.2GaN EBL (C-VCSEL) and (b) super-lattice Al0.15GaN/GaN EBL (MQB-VCSEL) taken at bias current density of 12 kA/cm2. The simulated barrier height for electrons/holes is 331/332 meV for C-VCSEL, and 431/310 meV for MQB-VCSEL, respectively.
Fig. 3
Fig. 3 The (a) electron and (b) hole reflectance probability versus carrier energy of different EBL structures in C-VCSEL and MQB-VCSEL. The dips both in electron and hole reflectance probability spectra of the MQB-VCSEL are due to the tunneling effect in constituent super-lattice structure.
Fig. 4
Fig. 4 Two dimensional mappings of electron, hole, and total current density flow in (a)─(c) for the C- VCSEL and (d)─(f) for MQB-VCSEL.
Fig. 5
Fig. 5 Comparison of the experimental and simulation results of the power-current density curve in C-VCSEL and MQB-VCSEL structures, and with the experimental current density-voltage characteristic shown in the inset.

Metrics