Abstract

In this paper, a single microring resonator structure formed by incorporating a reflectivity-tunable loop mirror is demonstrated for the tuning of resonance spacing. Autler-Townes splitting in the resonator is utilized to tune the spacing between two adjacent resonances by controlling the strength of coupling between the two counter-propagating degenerate modes in the microring resonator. A theoretical model based on the transfer matrix method is built to analyze the device. The theoretical analysis indicates that the resonance spacing can be tuned from zero to one free spectral range (FSR). In experiment, by integrating metallic microheater, the tuning of resonance spacing in the range of the whole FSR (1.17 nm) is achieved within 9.82 mW heating power dissipation. The device has potential for applications in reconfigurable optical filtering and microwave photonics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tuning of resonance-spacing in a traveling-wave resonator device

Amir H. Atabaki, Babak Momeni, Ali A. Eftekhar, Ehsan S. Hosseini, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 18(9) 9447-9455 (2010)

Autler–Townes splitting biosensing based on a nonuniform photonic crystal waveguide with feedback loop

Guohui Yuan, Fangcao Peng, Lei Guan, Zhenming Peng, and Zhuoran Wang
Appl. Opt. 57(24) 6976-6981 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
    [Crossref]
  2. Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
    [Crossref]
  3. Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17(2), 933–940 (2009).
    [Crossref] [PubMed]
  4. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  5. Q. Chang, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems,” Optical Fiber Communication Conference (Optical Society of America, 2009), paper JWA48.
    [Crossref]
  6. H. Yu, P. Li, M. Chen, H. Chen, S. Yang, and S. Xie, “Analog photonic link based on the Aulter-Townes splitting induced dual-band filter for OCS and the SOI signal processor,” Opt. Lett. 40(10), 2225–2228 (2015).
    [Crossref] [PubMed]
  7. B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
    [Crossref] [PubMed]
  8. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27(19), 1669–1671 (2002).
    [Crossref] [PubMed]
  9. C. M. Gentry, X. Zeng, and M. A. Popović, “Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing,” Opt. Lett. 39(19), 5689–5692 (2014).
    [Crossref] [PubMed]
  10. A. H. Atabaki and A. Adibi, “Demonstration of wavelength conversion in a reconfigurable coupled resonator in silicon,” in Photonics Conference (PHO) (IEEE, 2011), pp. 399–400.
    [Crossref]
  11. S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23(16), 21527–21540 (2015).
    [Crossref] [PubMed]
  12. A. H. Atabaki, B. Momeni, A. A. Eftekhar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Tuning of resonance-spacing in a traveling-wave resonator device,” Opt. Express 18(9), 9447–9455 (2010).
    [Crossref] [PubMed]
  13. Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, “Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling,” Opt. Express 16(7), 4621–4630 (2008).
    [Crossref] [PubMed]
  14. J. Wu, B. Liu, J. Peng, J. Mao, X. Jiang, C. Qiu, C. Tremblay, and Y. Su, “On-Chip Tunable Second-Order Differential-Equation Solver Based on a Silicon Photonic Mode-Split Microresonator,” J. Lightwave Technol. 33(17), 3542–3549 (2015).
    [Crossref]
  15. Y. M. Kang, A. Arbabi, and L. L. Goddard, “Engineering the spectral reflectance of microring resonators with integrated reflective elements,” Opt. Express 18(16), 16813–16825 (2010).
    [Crossref] [PubMed]
  16. Q. Huang, X. Zhang, J. Xia, and J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011).
    [Crossref] [PubMed]
  17. S. Werquin, S. Verstuyft, and P. Bienstman, “Integrated interferometric approach to solve microring resonance splitting in biosensor applications,” Opt. Express 21(14), 16955–16963 (2013).
    [Crossref] [PubMed]
  18. J. Song, L.-W. Luo, X. Luo, H. Zhou, X. Tu, L. Jia, Q. Fang, and G.-Q. Lo, “Loop coupled resonator optical waveguides,” Opt. Express 22(20), 24202–24216 (2014).
    [Crossref] [PubMed]
  19. W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Coupling modulation of microrings at rates beyond the linewidth limit,” Opt. Express 21(8), 9722–9733 (2013).
    [Crossref] [PubMed]
  20. T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
    [Crossref]
  21. Y. Zhang, C. Zeng, D. Li, G. Gao, Z. Huang, J. Yu, and J. Xia, “High-quality-factor photonic crystal ring resonator,” Opt. Lett. 39(5), 1282–1285 (2014).
    [Crossref] [PubMed]
  22. Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90(4), 043847 (2014).
    [Crossref]
  23. B. E. Little, S. T. Chu, and H. A. Haus, “Second-order filtering and sensing with partially coupled traveling waves in a single resonator,” Opt. Lett. 23(20), 1570–1572 (1998).
    [Crossref] [PubMed]
  24. J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
    [Crossref]

2015 (3)

2014 (5)

2013 (3)

2011 (1)

2010 (3)

2009 (1)

2008 (3)

Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, “Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling,” Opt. Express 16(7), 4621–4630 (2008).
[Crossref] [PubMed]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

2002 (1)

1998 (1)

1955 (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

Adibi, A.

A. H. Atabaki, B. Momeni, A. A. Eftekhar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Tuning of resonance-spacing in a traveling-wave resonator device,” Opt. Express 18(9), 9447–9455 (2010).
[Crossref] [PubMed]

A. H. Atabaki and A. Adibi, “Demonstration of wavelength conversion in a reconfigurable coupled resonator in silicon,” in Photonics Conference (PHO) (IEEE, 2011), pp. 399–400.
[Crossref]

Arbabi, A.

Arnold, S.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90(4), 043847 (2014).
[Crossref]

Assefa, S.

Atabaki, A. H.

A. H. Atabaki, B. Momeni, A. A. Eftekhar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Tuning of resonance-spacing in a traveling-wave resonator device,” Opt. Express 18(9), 9447–9455 (2010).
[Crossref] [PubMed]

A. H. Atabaki and A. Adibi, “Demonstration of wavelength conversion in a reconfigurable coupled resonator in silicon,” in Photonics Conference (PHO) (IEEE, 2011), pp. 399–400.
[Crossref]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

Barwicz, T.

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Coupling modulation of microrings at rates beyond the linewidth limit,” Opt. Express 21(8), 9722–9733 (2013).
[Crossref] [PubMed]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Bienstman, P.

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Chen, H.

Chen, M.

Chen, W.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Chu, S. T.

Dahlem, M. S.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Dainese, M.

Dong, J.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Dutt, A.

Eftekhar, A. A.

Fang, Q.

Farsi, A.

Gaeta, A. L.

Gan, F.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Gao, D.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Gao, G.

Gentry, C. M.

Goddard, L. L.

Green, W. M. J.

Haus, H. A.

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Holzwarth, C. W.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Hosseini, E. S.

Hu, Y.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90(4), 043847 (2014).
[Crossref]

Huang, Q.

Huang, Z.

Ippen, E. P.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Jia, L.

Jiang, X.

Kang, Y. M.

Kärtner, F. X.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Kippenberg, T. J.

Li, D.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Li, P.

Li, Q.

Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17(2), 933–940 (2009).
[Crossref] [PubMed]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

Lipson, M.

Little, B. E.

Liu, B.

Liu, F.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

Liu, L.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Liu, Y.-C.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90(4), 043847 (2014).
[Crossref]

Lo, G.-Q.

Luke, K.

Luo, L.-W.

Luo, X.

Ma, C.-Y.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90(4), 043847 (2014).
[Crossref]

Mao, J.

Miller, S. A.

Momeni, B.

Nori, F.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Okawachi, Y.

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Özdemir, S. K.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Pan, H.

Peng, B.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Peng, J.

Poon, J. K. S.

Popovic, M. A.

C. M. Gentry, X. Zeng, and M. A. Popović, “Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing,” Opt. Lett. 39(19), 5689–5692 (2014).
[Crossref] [PubMed]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Qiu, C.

Qiu, M.

Rakich, P. T.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Ramelow, S.

Sacher, W. D.

Shank, S. M.

Shao, L.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90(4), 043847 (2014).
[Crossref]

Smith, H. I.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Song, J.

Spillane, S. M.

Su, Y.

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

Tremblay, C.

Tu, X.

Vahala, K. J.

Verstuyft, S.

Vlasov, Y. A.

Wang, J.

Werquin, S.

Wosinski, L.

Wu, J.

Xia, J.

Xiao, Y.-F.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90(4), 043847 (2014).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xie, S.

Yang, L.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Yang, S.

Yang, T.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Yegnanarayanan, S.

Yu, H.

Yu, J.

Yu, Y.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Zeng, C.

Zeng, X.

Zhang, X.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Q. Huang, X. Zhang, J. Xia, and J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Z.

Zheng, A.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Zhou, H.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Appl. Phys. Lett. (1)

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

IEEE Photonics J. (1)

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nat. Commun. (1)

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Opt. Express (8)

Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17(2), 933–940 (2009).
[Crossref] [PubMed]

S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23(16), 21527–21540 (2015).
[Crossref] [PubMed]

A. H. Atabaki, B. Momeni, A. A. Eftekhar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Tuning of resonance-spacing in a traveling-wave resonator device,” Opt. Express 18(9), 9447–9455 (2010).
[Crossref] [PubMed]

Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, “Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling,” Opt. Express 16(7), 4621–4630 (2008).
[Crossref] [PubMed]

S. Werquin, S. Verstuyft, and P. Bienstman, “Integrated interferometric approach to solve microring resonance splitting in biosensor applications,” Opt. Express 21(14), 16955–16963 (2013).
[Crossref] [PubMed]

J. Song, L.-W. Luo, X. Luo, H. Zhou, X. Tu, L. Jia, Q. Fang, and G.-Q. Lo, “Loop coupled resonator optical waveguides,” Opt. Express 22(20), 24202–24216 (2014).
[Crossref] [PubMed]

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Coupling modulation of microrings at rates beyond the linewidth limit,” Opt. Express 21(8), 9722–9733 (2013).
[Crossref] [PubMed]

Y. M. Kang, A. Arbabi, and L. L. Goddard, “Engineering the spectral reflectance of microring resonators with integrated reflective elements,” Opt. Express 18(16), 16813–16825 (2010).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

Phys. Rev. A (1)

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90(4), 043847 (2014).
[Crossref]

Proc. SPIE (1)

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008).
[Crossref]

Other (2)

A. H. Atabaki and A. Adibi, “Demonstration of wavelength conversion in a reconfigurable coupled resonator in silicon,” in Photonics Conference (PHO) (IEEE, 2011), pp. 399–400.
[Crossref]

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems,” Optical Fiber Communication Conference (Optical Society of America, 2009), paper JWA48.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of a single microring resonator with a reflective element characterized by the scattering matrix (S). (b) The normalized frequency splitting of the microring resonator structure shown in (a) vs. the transmission factor of the reflective element t. (c), (d), and (e) show the transmission spectra of the microring resonator for t = 1, t = 0, and t = −1, respectively.
Fig. 2
Fig. 2 (a) Structure of the single microring resonator with a reflectivity-tunable loop mirror. A Mach-Zehnder interferometer (MZI) coupler is used to tune the reflectivity of the MZI-loop mirror by controlling the differential phase shift between the two MZI arms. (b) The transmission factor of the MZI-loop mirror t vs. the differential phase shift θd .
Fig. 3
Fig. 3 Normalized frequency splitting versus the differential phase shift θd in the microring resonator with a MZI-loop mirror for different power coupling coefficients of the directional couplers in the interferometer.
Fig. 4
Fig. 4 SEM image of the fabricated device on SOI. H1 and H2 represent the microheaters on the top of two MZI arms.
Fig. 5
Fig. 5 Measured transmission spectra of the device structure shown in Fig. 4 for three different power dissipations of (a) 0 mW, (b) 4.58 mW, and (c) 9.82 mW in heater H1. The resonance spacing of zero, about half FSR and one whole FSR between the splitting supermodes are obtained respectively.
Fig. 6
Fig. 6 (a) Measured transmission spectra near 1535 nm for six different heating power in heater H1. Horizontal axis is the wavelength detuning with respect to the centers of the splitting supermodes. (b) Resonance spacing between the splitting supermodes versus the power dissipation in heater H1.
Fig. 7
Fig. 7 Calculated transmission spectra of the resonator structure with different θd . The horizontal axis is identical to that used in Figs. 1(c) to 1(e).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S = ( r e i ψ t t r e i ψ ) e i ϕ ,
b 1 = τ α t ( 1 + τ 2 ) e i ( θ t + ϕ ) + α 2 τ e i 2 ( θ t + ϕ ) 1 2 α t τ e i ( θ t + ϕ ) + α 2 τ 2 e i 2 ( θ t + ϕ ) .
θ d = θ A r m 1 θ A r m 2 ,
θ c = θ A r m 1 + θ A r m 2 ,
S l = ( sin θ d cos θ d cos θ d sin θ d ) e i ( θ l + θ c + π ) ,

Metrics