Abstract

We present a quasi-common-path interferometer with a double field of view (FOV). The laser beam of an imaging system is separated into three parts using three mirrors; the first and second beams are used to image two different areas of a sample, while the third beam functions as a reference beam. The reference beam is prepared by making clear area in a sample and projecting it on an image sensor. A double FOV is obtained by Fourier domain multiplexing, whereby two interferometric images corresponding to two different areas of a sample are modulated with two different spatial carrier frequencies. The feasibility of this technique is experimentally demonstrated by imaging two different areas of a test target with a single image sensor.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration

Lu Han, Zhen-Jia Cheng, Yang Yang, Ben-Yi Wang, Qing-Yang Yue, and Cheng-Shan Guo
Opt. Express 25(18) 21877-21886 (2017)

Single-shot dual-wavelength off-axis quasi-common-path digital holography using polarization-multiplexing

Mingguang Shan, Lei Liu, Zhi Zhong, Bin Liu, Guangyu Luan, and Yabin Zhang
Opt. Express 25(21) 26253-26261 (2017)

Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy

Dushan N. Wadduwage, Vijay Raj Singh, Heejin Choi, Zahid Yaqoob, Hans Heemskerk, Paul Matsudaira, and Peter T. C. So
Optica 4(5) 546-556 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [Crossref] [PubMed]
  2. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
    [Crossref] [PubMed]
  3. D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
    [Crossref]
  4. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [Crossref] [PubMed]
  5. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [Crossref] [PubMed]
  6. M. R. Jafarfard, B. Tayebi, S. Lee, Y.-S. Bae, and D. Y. Kim, “Optimum phase shift for quantitative phase microscopy in volume measurement,” J. Opt. Soc. Am. A 31(11), 2429–2436 (2014).
    [Crossref] [PubMed]
  7. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
    [Crossref] [PubMed]
  8. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
    [Crossref] [PubMed]
  9. D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements,” Appl. Opt. 54(16), 5003–5010 (2015).
    [Crossref] [PubMed]
  10. S. Lee, J. Y. Lee, W. Yang, and D. Y. Kim, “Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy,” Opt. Express 17(8), 6476–6486 (2009).
    [Crossref] [PubMed]
  11. Y.-S. Bae, J.-I. Song, D. Har, and D. Y. Kim, “Beam propagation analysis on thickness measurements in quantitative phase microscopy,” Opt. Rev.in press.
  12. P. Memmolo, V. Bianco, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, “Encoding multiple holograms for speckle-noise reduction in optical display,” Opt. Express 22(21), 25768–25775 (2014).
    [Crossref] [PubMed]
  13. M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33(22), 2629–2631 (2008).
    [Crossref] [PubMed]
  14. J. Wang, J. Zhao, C. Qin, J. Di, A. Rauf, and H. Jiang, “Digital holographic interferometry based on wavelength and angular multiplexing for measuring the ternary diffusion,” Opt. Lett. 37(7), 1211–1213 (2012).
    [Crossref] [PubMed]
  15. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [Crossref] [PubMed]
  16. K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
    [Crossref] [PubMed]
  17. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
    [Crossref] [PubMed]
  18. M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
    [Crossref] [PubMed]
  19. G. Coppola, P. Ferraro, M. Iodice, and S. De Nicola, “Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer,” Appl. Opt. 42(19), 3882–3887 (2003).
    [Crossref] [PubMed]
  20. N. Warnasooriya and M. K. Kim, “Quantitative phase imaging using three-wavelength optical phase unwrapping,” J. Mod. Opt. 56(1), 67–74 (2009).
    [Crossref]
  21. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
    [Crossref] [PubMed]
  22. Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
    [Crossref] [PubMed]
  23. B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39(19), 5740–5743 (2014).
    [Crossref] [PubMed]
  24. I. Yamaguchi, J.-I. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8(2), 85–89 (2001).
    [Crossref]
  25. B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23(9), 11264–11271 (2015).
    [Crossref] [PubMed]
  26. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16(13), 9753–9764 (2008).
    [Crossref] [PubMed]
  27. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15(22), 14591–14600 (2007).
    [Crossref] [PubMed]
  28. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [Crossref] [PubMed]
  29. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
    [Crossref] [PubMed]
  30. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
    [Crossref]
  31. L. Rayleigh, “L. Theoretical considerations respecting the separation of gases by diffusion and similar processes,” The London, Edinburgh, and Dublin Philosophical Magazine and J. Sci. 42(259), 493–498 (1896).
    [Crossref]
  32. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (John Wiley & Sons, 2002).
  33. P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3(3), e151 (2014).
    [Crossref]
  34. I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39(6), 1525–1528 (2014).
    [Crossref] [PubMed]
  35. J.-M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Lasers Eng. 68, 188–193 (2015).
    [Crossref]
  36. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  37. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
    [Crossref]
  38. Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
    [Crossref] [PubMed]
  39. N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
    [Crossref] [PubMed]
  40. K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
    [Crossref] [PubMed]
  41. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
    [Crossref] [PubMed]

2015 (3)

2014 (10)

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3(3), e151 (2014).
[Crossref]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39(6), 1525–1528 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
[Crossref] [PubMed]

K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
[Crossref] [PubMed]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39(19), 5740–5743 (2014).
[Crossref] [PubMed]

M. R. Jafarfard, B. Tayebi, S. Lee, Y.-S. Bae, and D. Y. Kim, “Optimum phase shift for quantitative phase microscopy in volume measurement,” J. Opt. Soc. Am. A 31(11), 2429–2436 (2014).
[Crossref] [PubMed]

P. Memmolo, V. Bianco, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, “Encoding multiple holograms for speckle-noise reduction in optical display,” Opt. Express 22(21), 25768–25775 (2014).
[Crossref] [PubMed]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

2013 (1)

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
[Crossref]

2012 (2)

2009 (2)

S. Lee, J. Y. Lee, W. Yang, and D. Y. Kim, “Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy,” Opt. Express 17(8), 6476–6486 (2009).
[Crossref] [PubMed]

N. Warnasooriya and M. K. Kim, “Quantitative phase imaging using three-wavelength optical phase unwrapping,” J. Mod. Opt. 56(1), 67–74 (2009).
[Crossref]

2008 (5)

2007 (3)

2006 (4)

2005 (2)

2004 (1)

2003 (2)

2001 (1)

I. Yamaguchi, J.-I. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8(2), 85–89 (2001).
[Crossref]

2000 (1)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
[Crossref]

1998 (1)

1896 (1)

L. Rayleigh, “L. Theoretical considerations respecting the separation of gases by diffusion and similar processes,” The London, Edinburgh, and Dublin Philosophical Magazine and J. Sci. 42(259), 493–498 (1896).
[Crossref]

Badizadegan, K.

Bae, Y. S.

Bae, Y.-S.

M. R. Jafarfard, B. Tayebi, S. Lee, Y.-S. Bae, and D. Y. Kim, “Optimum phase shift for quantitative phase microscopy in volume measurement,” J. Opt. Soc. Am. A 31(11), 2429–2436 (2014).
[Crossref] [PubMed]

Y.-S. Bae, J.-I. Song, D. Har, and D. Y. Kim, “Beam propagation analysis on thickness measurements in quantitative phase microscopy,” Opt. Rev.in press.

Barty, A.

Bergström, P.

Bianco, V.

Bingham, P. R.

Charrière, F.

Choi, C.

Choi, W.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Choi, Y.

Colomb, T.

Coppola, G.

Cuche, E.

Dakoff, A.

Dasari, R. R.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

De Nicola, S.

Deflores, L. P.

Depeursinge, C.

Desse, J.-M.

J.-M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Lasers Eng. 68, 188–193 (2015).
[Crossref]

Di, J.

Emery, Y.

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Feld, M. S.

Ferraro, P.

Finizio, A.

Frenklach, I.

García, J.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
[Crossref] [PubMed]

Gass, J.

Girshovitz, P.

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3(3), e151 (2014).
[Crossref]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39(6), 1525–1528 (2014).
[Crossref] [PubMed]

Grilli, S.

Hällstig, E.

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements,” Appl. Opt. 54(16), 5003–5010 (2015).
[Crossref] [PubMed]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
[Crossref]

Hamza, B.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Har, D.

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23(9), 11264–11271 (2015).
[Crossref] [PubMed]

Y.-S. Bae, J.-I. Song, D. Har, and D. Y. Kim, “Beam propagation analysis on thickness measurements in quantitative phase microscopy,” Opt. Rev.in press.

Heger, T. J.

Heo, J. H.

Hillman, T. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

Hosseini, P.

Ikeda, T.

Iodice, M.

Irimia, D.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Iwai, H.

Jafarfard, M. R.

Jang, S.

Javidi, B.

Jiang, H.

Kang, J. W.

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

Kato, J.-I.

I. Yamaguchi, J.-I. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8(2), 85–89 (2001).
[Crossref]

Kemper, B.

Khodadad, D.

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements,” Appl. Opt. 54(16), 5003–5010 (2015).
[Crossref] [PubMed]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
[Crossref]

Kim, D. Y.

Kim, K.

Kim, M. K.

N. Warnasooriya and M. K. Kim, “Quantitative phase imaging using three-wavelength optical phase unwrapping,” J. Mod. Opt. 56(1), 67–74 (2009).
[Crossref]

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
[Crossref] [PubMed]

Kim, Y.

Kuehn, J.

Kühn, J.

Laporta, P.

Lee, J. Y.

Lee, K.

Lee, S.

Lue, N.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Magistretti, P. J.

Mann, C. J.

Marian, A.

Marquet, P.

Martel, J.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Memmolo, P.

Miccio, L.

Mico, V.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
[Crossref] [PubMed]

Mitchell, E. A.

Montfort, F.

Moon, S.

Netti, P. A.

Nugent, K. A.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Ohta, S.

I. Yamaguchi, J.-I. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8(2), 85–89 (2001).
[Crossref]

Osellame, R.

Osten, W.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
[Crossref]

Paganin, D.

Paquit, V. C.

Park, H.

Park, Y.

Paturzo, M.

Pavillon, N.

Picart, P.

J.-M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Lasers Eng. 68, 188–193 (2015).
[Crossref]

Popescu, G.

Qin, C.

Rappaz, B.

Rauf, A.

Rayleigh, L.

L. Rayleigh, “L. Theoretical considerations respecting the separation of gases by diffusion and similar processes,” The London, Edinburgh, and Dublin Philosophical Magazine and J. Sci. 42(259), 493–498 (1896).
[Crossref]

Roberts, A.

Seebacher, S.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
[Crossref]

Shaked, N. T.

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3(3), e151 (2014).
[Crossref]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39(6), 1525–1528 (2014).
[Crossref] [PubMed]

Sharif, F.

Shim, H.

Shokuh, S. H. H.

Sjödahl, M.

D. Khodadad, P. Bergström, E. Hällstig, and M. Sjödahl, “Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements,” Appl. Opt. 54(16), 5003–5010 (2015).
[Crossref] [PubMed]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
[Crossref]

So, P.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

So, P. T.

Song, J.-I.

Y.-S. Bae, J.-I. Song, D. Har, and D. Y. Kim, “Beam propagation analysis on thickness measurements in quantitative phase microscopy,” Opt. Rev.in press.

Song, Y. S.

Sung, Y.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Tayebi, B.

Tobin, K. W.

Tulino, A.

Vaughan, J. C.

von Bally, G.

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
[Crossref]

Wang, J.

Warnasooriya, N.

N. Warnasooriya and M. K. Kim, “Quantitative phase imaging using three-wavelength optical phase unwrapping,” J. Mod. Opt. 56(1), 67–74 (2009).
[Crossref]

Yamaguchi, I.

I. Yamaguchi, J.-I. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8(2), 85–89 (2001).
[Crossref]

Yang, W.

Yaqoob, Z.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

Yoon, J.

Zalevsky, Z.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
[Crossref] [PubMed]

Zhao, J.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101(8), 84101 (2012).
[Crossref] [PubMed]

J. Mod. Opt. (1)

N. Warnasooriya and M. K. Kim, “Quantitative phase imaging using three-wavelength optical phase unwrapping,” J. Mod. Opt. 56(1), 67–74 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3(3), e151 (2014).
[Crossref]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

Opt. Eng. (2)

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52(10), 101912 (2013).
[Crossref]

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
[Crossref]

Opt. Express (9)

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23(9), 11264–11271 (2015).
[Crossref] [PubMed]

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16(13), 9753–9764 (2008).
[Crossref] [PubMed]

P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15(22), 14591–14600 (2007).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[Crossref] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[Crossref] [PubMed]

S. Lee, J. Y. Lee, W. Yang, and D. Y. Kim, “Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy,” Opt. Express 17(8), 6476–6486 (2009).
[Crossref] [PubMed]

P. Memmolo, V. Bianco, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, “Encoding multiple holograms for speckle-noise reduction in optical display,” Opt. Express 22(21), 25768–25775 (2014).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

J.-M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Lasers Eng. 68, 188–193 (2015).
[Crossref]

Opt. Lett. (15)

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39(6), 1525–1528 (2014).
[Crossref] [PubMed]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39(19), 5740–5743 (2014).
[Crossref] [PubMed]

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
[Crossref] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33(22), 2629–2631 (2008).
[Crossref] [PubMed]

J. Wang, J. Zhao, C. Qin, J. Di, A. Rauf, and H. Jiang, “Digital holographic interferometry based on wavelength and angular multiplexing for measuring the ternary diffusion,” Opt. Lett. 37(7), 1211–1213 (2012).
[Crossref] [PubMed]

K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, and Y. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39(24), 6935–6938 (2014).
[Crossref] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[Crossref] [PubMed]

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39(10), 2908–2911 (2014).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[Crossref] [PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref] [PubMed]

K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
[Crossref] [PubMed]

Opt. Rev. (1)

I. Yamaguchi, J.-I. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8(2), 85–89 (2001).
[Crossref]

Phys. Rev. Appl. (1)

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

The London, Edinburgh, and Dublin Philosophical Magazine and J. Sci. (1)

L. Rayleigh, “L. Theoretical considerations respecting the separation of gases by diffusion and similar processes,” The London, Edinburgh, and Dublin Philosophical Magazine and J. Sci. 42(259), 493–498 (1896).
[Crossref]

Other (2)

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (John Wiley & Sons, 2002).

Y.-S. Bae, J.-I. Song, D. Har, and D. Y. Kim, “Beam propagation analysis on thickness measurements in quantitative phase microscopy,” Opt. Rev.in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of (a) transmission double-field-of-view (FOV) phase microscopy and (b) reflective double-FOV phase microscopy. Red arrows indicate the position of the objects on the sample plane. R, M, BS, S, and CCD indicate the reference, mirror, beam splitter, sample and charge-coupled device camera, respectively.
Fig. 2
Fig. 2 Two mirrors (a) without any separation and (b) separated by a distance t.
Fig. 3
Fig. 3 2D reconstructed phase of (a) overlapping field of view (FOV), (b) the first FOV, and (c) the second FOV. (d) 3D reconstructed FOV. The pseudo color scale bar shows the phase in radians, whereas the white scale bars indicate a length of 10 µm.
Fig. 4
Fig. 4 (a) An experimentally obtained 2D interference pattern of the 10 µm polymer microspheres belonging to different imaging areas. (b) 2D intensity pattern of the Fourier transform of (a) with a logarithmic scale. (c) Reconstructed 2D pseudo color phase of the two overlapping fields of view (FOVs). (d) The 2D positions of the two FOVs on the sample plane.
Fig. 5
Fig. 5 Reconstructed 3D image of the (a) overlapping fields of view (FOVs), (b) the first FOV, and (c) the second FOV. The pseudo color scale bar shows the phase in radians, whereas the white scale bars indicate a length of 10 µm.
Fig. 6
Fig. 6 (a) Phase standard deviation distribution for each of the 250 images, (b) phase standard deviation distribution of 250 images for each pixel.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

FOV=RN/2,
q= sinθ λ ,
θ tan 1 ( l+t d ),
I O = | E R + E FOV1 + E FOV2 | 2 = | E R | 2 + | E FOV1 | 2 + | E FOV2 | 2 +2| E R |.| E FOV1 |. cos( q x x+ φ FOV1 S + φ FOV1 b )+2| E R |.| E FOV2 |.cos( q x x+ q y y+ φ FOV2 S + φ FOV2 b )2| E FOV1 |.| E FOV2 |.cos( q y y+ φ FOV1FOV2 S + φ FOV1FOV2 b )
i FOV1 S =2| E R |.| E FOV1 |.exp(i( q x x+ φ FOV1 S + φ FOV1 b ).
φ FOV1 (x,y)=arg( i FOV1 S i FOV1 b ).
φ FOV2 (x,y)=arg( i FOV2 S i FOV2 b ),
φ FOV1FOV2 (x,y)=arg( i FOV1FOV2 S i FOV1FOV2 b ),

Metrics