Abstract

In this paper, a simple novel digital modulation format identification (MFI) scheme for coherent optical systems is proposed. The scheme is based on the evaluation of the peak-to-average-power ratio (PAPR) of the incoming data samples after analog-to-digital conversion (ADC), chromatic dispersion (CD) and polarization mode demultiplexing (PMD) compensation at the receiver (Rx). Since at a particular optical-signal-to-noise ratio (OSNR) value different modulation formats have distinct PAPR values, it is possible to identify them. The proposed scheme and the results are analyzed both experimentally and through numerical simulations. The results demonstrate successful identification among four modulation formats (MF) commonly used in digital coherent systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Blind modulation format identification using nonlinear power transformation

Gengchen Liu, Roberto Proietti, Kaiqi Zhang, Hongbo Lu, and S. J. Ben Yoo
Opt. Express 25(25) 30895-30904 (2017)

Modulation format identification and OSNR monitoring using density distributions in Stokes axes for digital coherent receivers

Anlin Yi, Lianshan Yan, Hengjiang Liu, Lin Jiang, Yan Pan, Bin Luo, and Wei Pan
Opt. Express 27(4) 4471-4479 (2019)

Modulation format identification aided hitless flexible coherent transceiver

Meng Xiang, Qunbi Zhuge, Meng Qiu, Xingyu Zhou, Fangyuan Zhang, Ming Tang, Deming Liu, Songnian Fu, and David V. Plant
Opt. Express 24(14) 15642-15655 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index: Forecast and Methodology, 2013–2018. [Online] Available at ( http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf ).
  2. A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol. 28(4), 466–475 (2010).
    [Crossref]
  3. J. Mitola, “Software radios-survey, critical evaluation and future directions,” in Telesystems Conference, NTC-92 (1992).
  4. K. Roberts and C. Laperle, “Flexible transceivers,” in European Conference and Exhibition on Optical Communication, paper. We.3.A.3 (2012).
    [Crossref]
  5. R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical modulation format recognition in stokes space for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013) paper. OTh3B.3.
    [Crossref]
  6. O. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modulation classification techniques: classical approaches and new trends,” IET Communications 1(2), 137–156 (2007).
    [Crossref]
  7. F. N. Khan, Y. Zhou, A. P. T. Lau, and C. Lu, “Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks,” Opt. Express 20(11), 12422–12431 (2012).
    [Crossref] [PubMed]
  8. N. Gonzalez, D. Zibar, and I. Monroy, “Cognitive digital receiver for burst mode phase modulated radio over fiber links,” in European Conference and Exhibition on Optical Communication, paper. P6.11 (2010).
    [Crossref]
  9. J. Liu, Z. Dong, K. P. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (IEEE, 2014), paper. Th4D.3.
  10. E. Adles, M. Dennis, W. Johnson, T. McKenna, C. Menyuk, J. Sluz, R. Sova, M. Taylor, and R. Venkat, “Blind optical modulation format identification from physical layer characteristics,” J. Lightwave Technol. 32(8), 1501–1509 (2014).
    [Crossref]
  11. Z. Dong, A. P. T. Lau, and C. Lu, “OSNR monitoring for QPSK and 16-QAM systems in presence of fiber nonlinearities for digital coherent receivers,” Opt. Express 20(17), 19520–19534 (2012).
    [Crossref] [PubMed]
  12. C. Zhu, A. V. Tran, S. Chen, L. B. Du, C. C. Do, T. Anderson, A. J. Lowery, and E. Skafidas, “Statistical moments-based OSNR monitoring for coherent optical systems,” Opt. Express 20(16), 17711–17721 (2012).
    [Crossref] [PubMed]
  13. Z. Dong, K. Zhong, X. Zhou, C. Lu, A. Lau, Y. Lu, and L. Li, “Modulation-format-independent OSNR monitoring insensitive to cascaded filtering effects by low-cost coherent receptions and RF power measurements,” Opt. Express 23 (12), 15971–15982 (2015).
    [Crossref] [PubMed]
  14. S. Oda, Jeng-Yuan Yang, Y. Akasaka, K. Sone, Y. Aoki, M. Sekiya, and J. C. Rasmussen, “In-band OSNR monitor using an optical bandpass filter and optical power measurements for superchannel signals,” in European Conference and Exhibition on Optical Communication (IEEE, 2013) paper. P.3.12.
    [Crossref]
  15. S. M. Bilal, C. Fludger, V. Curri, and G. Bosco, “Multi-stage CPE algorithms for phase noise mitigation in 64-QAM optical systems,” J. Lightwave Technol. 32(17), 2973–2980 (2014).
    [Crossref]

2015 (1)

2014 (2)

2012 (3)

2010 (1)

2007 (1)

O. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modulation classification techniques: classical approaches and new trends,” IET Communications 1(2), 137–156 (2007).
[Crossref]

Abdi, A.

O. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modulation classification techniques: classical approaches and new trends,” IET Communications 1(2), 137–156 (2007).
[Crossref]

Adles, E.

Akasaka, Y.

S. Oda, Jeng-Yuan Yang, Y. Akasaka, K. Sone, Y. Aoki, M. Sekiya, and J. C. Rasmussen, “In-band OSNR monitor using an optical bandpass filter and optical power measurements for superchannel signals,” in European Conference and Exhibition on Optical Communication (IEEE, 2013) paper. P.3.12.
[Crossref]

Anderson, T.

Aoki, Y.

S. Oda, Jeng-Yuan Yang, Y. Akasaka, K. Sone, Y. Aoki, M. Sekiya, and J. C. Rasmussen, “In-band OSNR monitor using an optical bandpass filter and optical power measurements for superchannel signals,” in European Conference and Exhibition on Optical Communication (IEEE, 2013) paper. P.3.12.
[Crossref]

Arlunno, V.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical modulation format recognition in stokes space for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013) paper. OTh3B.3.
[Crossref]

Bar-Ness, Y.

O. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modulation classification techniques: classical approaches and new trends,” IET Communications 1(2), 137–156 (2007).
[Crossref]

Bilal, S. M.

Borkowski, R.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical modulation format recognition in stokes space for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013) paper. OTh3B.3.
[Crossref]

Bosco, G.

Caballero, A.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical modulation format recognition in stokes space for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013) paper. OTh3B.3.
[Crossref]

Chen, S.

Curri, V.

Dennis, M.

Do, C. C.

Dobre, O.

O. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modulation classification techniques: classical approaches and new trends,” IET Communications 1(2), 137–156 (2007).
[Crossref]

Dong, Z.

Du, L. B.

Fludger, C.

Gonzalez, N.

N. Gonzalez, D. Zibar, and I. Monroy, “Cognitive digital receiver for burst mode phase modulated radio over fiber links,” in European Conference and Exhibition on Optical Communication, paper. P6.11 (2010).
[Crossref]

Johnson, W.

Khan, F. N.

Laperle, C.

K. Roberts and C. Laperle, “Flexible transceivers,” in European Conference and Exhibition on Optical Communication, paper. We.3.A.3 (2012).
[Crossref]

Lau, A.

Lau, A. P. T.

Z. Dong, A. P. T. Lau, and C. Lu, “OSNR monitoring for QPSK and 16-QAM systems in presence of fiber nonlinearities for digital coherent receivers,” Opt. Express 20(17), 19520–19534 (2012).
[Crossref] [PubMed]

F. N. Khan, Y. Zhou, A. P. T. Lau, and C. Lu, “Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks,” Opt. Express 20(11), 12422–12431 (2012).
[Crossref] [PubMed]

J. Liu, Z. Dong, K. P. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (IEEE, 2014), paper. Th4D.3.

Li, L.

Liu, J.

J. Liu, Z. Dong, K. P. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (IEEE, 2014), paper. Th4D.3.

Lowery, A. J.

Lu, C.

Lu, Y.

Z. Dong, K. Zhong, X. Zhou, C. Lu, A. Lau, Y. Lu, and L. Li, “Modulation-format-independent OSNR monitoring insensitive to cascaded filtering effects by low-cost coherent receptions and RF power measurements,” Opt. Express 23 (12), 15971–15982 (2015).
[Crossref] [PubMed]

J. Liu, Z. Dong, K. P. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (IEEE, 2014), paper. Th4D.3.

McKenna, T.

Menyuk, C.

Mitola, J.

J. Mitola, “Software radios-survey, critical evaluation and future directions,” in Telesystems Conference, NTC-92 (1992).

Monroy, I.

N. Gonzalez, D. Zibar, and I. Monroy, “Cognitive digital receiver for burst mode phase modulated radio over fiber links,” in European Conference and Exhibition on Optical Communication, paper. P6.11 (2010).
[Crossref]

Monroy, I. T.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical modulation format recognition in stokes space for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013) paper. OTh3B.3.
[Crossref]

Mukherjee, B.

Nag, A.

Oda, S.

S. Oda, Jeng-Yuan Yang, Y. Akasaka, K. Sone, Y. Aoki, M. Sekiya, and J. C. Rasmussen, “In-band OSNR monitor using an optical bandpass filter and optical power measurements for superchannel signals,” in European Conference and Exhibition on Optical Communication (IEEE, 2013) paper. P.3.12.
[Crossref]

Rasmussen, J. C.

S. Oda, Jeng-Yuan Yang, Y. Akasaka, K. Sone, Y. Aoki, M. Sekiya, and J. C. Rasmussen, “In-band OSNR monitor using an optical bandpass filter and optical power measurements for superchannel signals,” in European Conference and Exhibition on Optical Communication (IEEE, 2013) paper. P.3.12.
[Crossref]

Roberts, K.

K. Roberts and C. Laperle, “Flexible transceivers,” in European Conference and Exhibition on Optical Communication, paper. We.3.A.3 (2012).
[Crossref]

Sekiya, M.

S. Oda, Jeng-Yuan Yang, Y. Akasaka, K. Sone, Y. Aoki, M. Sekiya, and J. C. Rasmussen, “In-band OSNR monitor using an optical bandpass filter and optical power measurements for superchannel signals,” in European Conference and Exhibition on Optical Communication (IEEE, 2013) paper. P.3.12.
[Crossref]

Skafidas, E.

Sluz, J.

Sone, K.

S. Oda, Jeng-Yuan Yang, Y. Akasaka, K. Sone, Y. Aoki, M. Sekiya, and J. C. Rasmussen, “In-band OSNR monitor using an optical bandpass filter and optical power measurements for superchannel signals,” in European Conference and Exhibition on Optical Communication (IEEE, 2013) paper. P.3.12.
[Crossref]

Sova, R.

Su, W.

O. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modulation classification techniques: classical approaches and new trends,” IET Communications 1(2), 137–156 (2007).
[Crossref]

Taylor, M.

Tornatore, M.

Tran, A. V.

Venkat, R.

Yang, Jeng-Yuan

S. Oda, Jeng-Yuan Yang, Y. Akasaka, K. Sone, Y. Aoki, M. Sekiya, and J. C. Rasmussen, “In-band OSNR monitor using an optical bandpass filter and optical power measurements for superchannel signals,” in European Conference and Exhibition on Optical Communication (IEEE, 2013) paper. P.3.12.
[Crossref]

Zhong, K.

Zhong, K. P.

J. Liu, Z. Dong, K. P. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (IEEE, 2014), paper. Th4D.3.

Zhou, X.

Zhou, Y.

Zhu, C.

Zibar, D.

N. Gonzalez, D. Zibar, and I. Monroy, “Cognitive digital receiver for burst mode phase modulated radio over fiber links,” in European Conference and Exhibition on Optical Communication, paper. P6.11 (2010).
[Crossref]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical modulation format recognition in stokes space for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013) paper. OTh3B.3.
[Crossref]

IET Communications (1)

O. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modulation classification techniques: classical approaches and new trends,” IET Communications 1(2), 137–156 (2007).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (4)

Other (7)

Cisco Visual Networking Index: Forecast and Methodology, 2013–2018. [Online] Available at ( http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf ).

N. Gonzalez, D. Zibar, and I. Monroy, “Cognitive digital receiver for burst mode phase modulated radio over fiber links,” in European Conference and Exhibition on Optical Communication, paper. P6.11 (2010).
[Crossref]

J. Liu, Z. Dong, K. P. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (IEEE, 2014), paper. Th4D.3.

S. Oda, Jeng-Yuan Yang, Y. Akasaka, K. Sone, Y. Aoki, M. Sekiya, and J. C. Rasmussen, “In-band OSNR monitor using an optical bandpass filter and optical power measurements for superchannel signals,” in European Conference and Exhibition on Optical Communication (IEEE, 2013) paper. P.3.12.
[Crossref]

J. Mitola, “Software radios-survey, critical evaluation and future directions,” in Telesystems Conference, NTC-92 (1992).

K. Roberts and C. Laperle, “Flexible transceivers,” in European Conference and Exhibition on Optical Communication, paper. We.3.A.3 (2012).
[Crossref]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical modulation format recognition in stokes space for digital coherent receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013) paper. OTh3B.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram of proposed in-band OSNR monitor, (b)-(c) RF spectra after balanced detector showing filtered signal and ASE noise, whereas PCF and POF represent the electrical power of centrally filtering fCF and offset filtering at frequency fOF.
Fig. 2
Fig. 2 (a) Constellations, (b) Received signals in presence of frequency offset, phase noise and other impairments, (c) Normalized signal power distributions.
Fig. 3
Fig. 3 Simulation Setup.
Fig. 4
Fig. 4 Mean values of estimated PAPR (μPAPR) vs OSNR for different modulation formats and different number of symbols used in the PAPR estimation.
Fig. 5
Fig. 5 Standard deviation of estimated PAPR (σPAPR) vs OSNR for different modulation formats and different number of symbols used in the PAPR estimation.
Fig. 6
Fig. 6 Simulation results for polarization multiplexed (PM) QPSK, 16-QAM, 64-QAM and 256-QAM systems at 28 Gbaud for different fiber lengths.
Fig. 7
Fig. 7 Experimental Setup for modulation format identification (MFI) of 112 Gb/s (28GBaud) PM-QPSK, 112 Gb/s (14Gbaud) PM-16-QAM and 240 Gb/s (20Gbaud) PM-64-QAM systems.
Fig. 8
Fig. 8 PAPR vs OSNR for polarization multiplexed (PM) QPSK, 16-QAM and 64-QAM after CMA for a back to back system.
Fig. 9
Fig. 9 PAPR vs Launch Power after CMA for 16-QAM(1200 km) and 64-QAM(320 km) fiber systems.

Tables (1)

Tables Icon

Table 1 Theoretical OSNR Values for Different Modulation Formats@ BER ≈ 10−2

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P CF = P SIG + P ASE , P OF = R P SIG + P ASE
OSNR = γ P SIG P ASE = γ 1 P CF / P OF ( P CF / P OF ) R 1
PAPR = max k | y k | 2 P av
y k = x k e j θ k + n k
θ k = i = k v i
σ f 2 = 2 π Δ ν T s

Metrics