Abstract

Digital spatial light modulators (SLMs) with small pitch comparable to the wavelength of illuminating light and large physical dimension comparable to consumer displays are highly demanding for realizing realistic digital holography but are impractical due to various technical issues. Previously we proposed the way to overcome these hurdles by scalable SLM-micromesh (μM) heterostructures utilizing large scale consumer displays and passive binary amplitude μMs (AMs). However, a few drawbacks with these heterostructures are identified such as their low power efficiency due to the blocking of light beam diffracted from the SLM by the opaque part of the AM and the brightest zeroth order diffraction beam causing the lower power efficiency at higher diffraction orders. Thus in this paper, we employed scalable binary phase micromeshes (PMs) instead of AMs in the scalable heterostructures. This is able to minimize the power loss and to diminish the zeroth order diffraction beam simultaneously without requiring any time consuming steps. As a result, this allows full utilization of large scale consumer displays for scalable digital holography by employing scalable SLM-μM heterostructures with negligible power loss.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full-complex amplitude modulation with binary spatial light modulators

Erdem Ulusoy, Levent Onural, and Haldun M. Ozaktas
J. Opt. Soc. Am. A 28(11) 2310-2321 (2011)

Optimally tuned spatial light modulators for digital holography

Christian Kohler, Xavier Schwab, and Wolfgang Osten
Appl. Opt. 45(5) 960-967 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. I. Bjelkhagn, Silver-Halide Recording Materials (Springer-Verlag, 1993).
  2. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
    [Crossref]
  3. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
    [Crossref]
  4. T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oi, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” Proc. SPIE 7957, 795709 (2011).
    [Crossref]
  5. K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
    [Crossref]
  6. V. M. Bove, “Digital holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).
    [Crossref]
  7. L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
    [Crossref]
  8. N. Savage, “Digital spatial light modulators,” Nat. Photonics 3(3), 170–172 (2009).
    [Crossref]
  9. T. Mishina, M. Okui, and F. Okano, “Viewing-zone enlargement method for sampled hologram that uses high-order diffraction,” Appl. Opt. 41(8), 1489–1499 (2002).
    [Crossref] [PubMed]
  10. Y. Takaki and Y. Hayashi, “Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator,” Appl. Opt. 47(19), D6–D11 (2008).
    [Crossref] [PubMed]
  11. J. Amako and T. Sonehara, “Kinoform using an electrically controlled birefringent liquid-crystal spatial light modulator,” Appl. Opt. 30(32), 4622–4628 (1991).
    [Crossref] [PubMed]
  12. N. Fukaya, K. Maeno, O. Nishikawa, K. Matumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
    [Crossref]
  13. H. Kang, N. Omura, T. Yamaguchi, H. Yoshikawa, S. Kim, and E. Kim, “Method to enlarge the hologram viewing window using a mirror module,” Opt. Eng. 48(7), 075801 (2009).
    [Crossref]
  14. H. Jeong and J. Choi, “Scalable digital spatial light modulator-micromesh heterostructures for real time wave optical applications,” Opt. Express 22(19), 22865–22881 (2014).
    [Crossref] [PubMed]
  15. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38(23), 4990–4996 (1999).
    [Crossref] [PubMed]
  16. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [Crossref] [PubMed]
  17. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref] [PubMed]
  18. D. Palima and V. R. Daria, “Holographic projection of arbitrary light patterns with a suppressed zero-order beam,” Appl. Opt. 46(20), 4197–4201 (2007).
    [Crossref] [PubMed]

2014 (1)

2012 (1)

V. M. Bove, “Digital holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).
[Crossref]

2011 (2)

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oi, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” Proc. SPIE 7957, 795709 (2011).
[Crossref]

2009 (3)

N. Savage, “Digital spatial light modulators,” Nat. Photonics 3(3), 170–172 (2009).
[Crossref]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref] [PubMed]

H. Kang, N. Omura, T. Yamaguchi, H. Yoshikawa, S. Kim, and E. Kim, “Method to enlarge the hologram viewing window using a mirror module,” Opt. Eng. 48(7), 075801 (2009).
[Crossref]

2008 (1)

2007 (1)

2002 (1)

2000 (1)

1999 (1)

1996 (1)

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

1995 (1)

N. Fukaya, K. Maeno, O. Nishikawa, K. Matumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

1991 (1)

1969 (1)

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

1968 (1)

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
[Crossref]

Amako, J.

Bove, V. M.

V. M. Bove, “Digital holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).
[Crossref]

Brault, R. G.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

Chen, F. S.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
[Crossref]

Choi, J.

Close, D. H.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

Cuche, E.

Daria, V. R.

Depeursinge, C.

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
[Crossref]

Fukaya, N.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

N. Fukaya, K. Maeno, O. Nishikawa, K. Matumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Hayashi, Y.

Honda, T.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

N. Fukaya, K. Maeno, O. Nishikawa, K. Matumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Jacobson, A. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

Jeong, H.

Kang, H.

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

H. Kang, N. Omura, T. Yamaguchi, H. Yoshikawa, S. Kim, and E. Kim, “Method to enlarge the hologram viewing window using a mirror module,” Opt. Eng. 48(7), 075801 (2009).
[Crossref]

Kawai, H.

Kim, E.

H. Kang, N. Omura, T. Yamaguchi, H. Yoshikawa, S. Kim, and E. Kim, “Method to enlarge the hologram viewing window using a mirror module,” Opt. Eng. 48(7), 075801 (2009).
[Crossref]

Kim, S.

H. Kang, N. Omura, T. Yamaguchi, H. Yoshikawa, S. Kim, and E. Kim, “Method to enlarge the hologram viewing window using a mirror module,” Opt. Eng. 48(7), 075801 (2009).
[Crossref]

Kurita, T.

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oi, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” Proc. SPIE 7957, 795709 (2011).
[Crossref]

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
[Crossref]

Liu, J.

Maeno, K.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

N. Fukaya, K. Maeno, O. Nishikawa, K. Matumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Margerum, J. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

Marquet, P.

Matumoto, K.

N. Fukaya, K. Maeno, O. Nishikawa, K. Matumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

McClung, F. J.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

Mishina, T.

Mishinaa, T.

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oi, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” Proc. SPIE 7957, 795709 (2011).
[Crossref]

Nishikawa, O.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

N. Fukaya, K. Maeno, O. Nishikawa, K. Matumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Ohzu, H.

Oi, R.

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oi, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” Proc. SPIE 7957, 795709 (2011).
[Crossref]

Okano, F.

Okui, M.

Omura, N.

H. Kang, N. Omura, T. Yamaguchi, H. Yoshikawa, S. Kim, and E. Kim, “Method to enlarge the hologram viewing window using a mirror module,” Opt. Eng. 48(7), 075801 (2009).
[Crossref]

Onural, L.

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Palima, D.

Sato, K.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

N. Fukaya, K. Maeno, O. Nishikawa, K. Matumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Savage, N.

N. Savage, “Digital spatial light modulators,” Nat. Photonics 3(3), 170–172 (2009).
[Crossref]

Senoh, T.

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oi, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” Proc. SPIE 7957, 795709 (2011).
[Crossref]

Sonehara, T.

Takaki, Y.

Wang, Y.

Xie, J.

Yamaguchi, T.

H. Kang, N. Omura, T. Yamaguchi, H. Yoshikawa, S. Kim, and E. Kim, “Method to enlarge the hologram viewing window using a mirror module,” Opt. Eng. 48(7), 075801 (2009).
[Crossref]

Yamamotoa, K.

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oi, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” Proc. SPIE 7957, 795709 (2011).
[Crossref]

Yaras, F.

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Yoshikawa, H.

H. Kang, N. Omura, T. Yamaguchi, H. Yoshikawa, S. Kim, and E. Kim, “Method to enlarge the hologram viewing window using a mirror module,” Opt. Eng. 48(7), 075801 (2009).
[Crossref]

Zhang, H.

Appl. Opt. (7)

Appl. Phys. Lett. (2)

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
[Crossref]

Nat. Photonics (1)

N. Savage, “Digital spatial light modulators,” Nat. Photonics 3(3), 170–172 (2009).
[Crossref]

Opt. Eng. (1)

H. Kang, N. Omura, T. Yamaguchi, H. Yoshikawa, S. Kim, and E. Kim, “Method to enlarge the hologram viewing window using a mirror module,” Opt. Eng. 48(7), 075801 (2009).
[Crossref]

Opt. Express (1)

Proc. IEEE (2)

V. M. Bove, “Digital holography’s digital second act,” Proc. IEEE 100(4), 918–928 (2012).
[Crossref]

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[Crossref]

Proc. SPIE (3)

N. Fukaya, K. Maeno, O. Nishikawa, K. Matumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

T. Senoh, T. Mishinaa, K. Yamamotoa, R. Oi, and T. Kurita, “Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels,” Proc. SPIE 7957, 795709 (2011).
[Crossref]

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

Other (1)

H. I. Bjelkhagn, Silver-Halide Recording Materials (Springer-Verlag, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics showing diffraction by a SLM-AM and (b) a SLM-PM heterostructure. In (b), the 0th order principal maximum of the SLM is suppressed down to zero due to the binary PM with modulation depth of π. As a result, the 1st order becomes the brightest and largely intensified.
Fig. 2
Fig. 2 (a) The zeroth to the third order principal maxima intensity profiles of PM8 are shown as a function of the thickness of the transparent materials when W PM / W PM = 1/2, α = 0.1/μm and R = 0.04705. (b) Diffraction profiles of μSLM-AM8 based on Eq. (4) is showing the highest zeroth order beam intensity. (c) and (d) are Diffraction profile of μSLM-AM8 based on Eq. (5) with the optimum ratio of WPM/PPM (c) and (d) WPM/PPM = 1/2, respectively when α = 0.1/μm and R = 0.04705.
Fig. 3
Fig. 3 (a) Chrome-gilt four micromeshes patterned on a single glass plate as AMs. (b) and (c) PMs fabricated on a glass by utilizing the binary amplitude micromeshes as a mask shown in (a). (d) and (e) The magnified images of AM6 (opening width of 2.8μm and pitch of 6μm) and AM8 (opening width of 3.75μm and pitch of 8μm), respectively. (f) and (g) Microscopic images of PM6 (mesa width of 3.07μm and pitch of 6μm) and PM8 (mesa width 4.09μm and pitch of 8μm), respectively.(h) and (i) the two and three dimensional topographical images of PM6 taken by an AFM.
Fig. 4
Fig. 4 (a) Optical image of graphically generated letters. (b) Computationally generated hologram (CGH) of the letter “CGH” by Fresnel diffraction method. (c) Optical reconstruction setup. The CGH is addressed into the SLM, and light propagates through the SLM and μM and arrives on the screen.
Fig. 5
Fig. 5 The experimental diffraction profiles of the μSLM alone, μSLM-AM8, μSLM-PM8, μSLM-AM6, and μSLM-PM6 heterostructures (a) without and (b) with addressing the hologram image on the μSLM (μSLM-I). Optically reconstructed real images corresponding to the 0th through the 9th order principal maxima by (c) the μSLM alone, (d) μSLM-AM8, (e) μSLM-PM8, (f) μSLM-AM6, and (g) μSLM-PM6.
Fig. 6
Fig. 6 (a) and (b) Fresnel diffraction based simulated diffraction profiles of μSLM-AM6 (PAM = 2WAM = 6 μm) and μSLM-PM6 using the computationally generated hologram of the letter “CGH” while the topographical profile of the PM6 obtained from the AFM topography [Fig. 3(h)] is used when nPR~1.54, α ~0.1/μm, R ~0.04705 and d ~1.47μm. (c) and (d) Real images of (a) and (b), respectively. The distance between the SLM and the meshes was optimized [14].
Fig. 7
Fig. 7 The computational diffraction profiles using Fresnel diffraction approximation [11] (a) for μSLM alone, μSLM-AM8 (WPM = 4μm), μSLM-PM8 (nPR~1.54, α ~0.1/μm, R ~0.04705, d ~1.47μm, WPM = 4μm), μSLM-AM6 (WPM = 3μm), and μSLM-PM6 (nPR~1.54, α ~0.1/μm, R ~0.04705, d ~1.47μm, WPM = 3μm) heterostructures, and (b) for the μSLM with the letter “CGH” hologram image addressed (μSLM-I). Computationally reconstructed real images corresponding to the 0th through 9th order principal maxima from (c) the μSLM alone, (d) μSLM-AM8, (e) μSLM-PM8, (f) μSLM-AM6 and (g) μSLM-PM6.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T μM ( x,y )= ( 1R ) n 0 / n μM exp( αd/2 )exp( i n μM kd )[ rect( x/ P μM )rect( x/ W μM ) ] +exp( i n 0 kd )rect( x/ W μM )
U screen ( X,Y )= exp[ ik( z+Z ) ] iλ( z+Z ) ×( F air [ exp( ik n 0 d )rect( x/ W μM ) ] + F μM { ( 1R ) n 0 / n μM exp( αd /2 )exp( ik n μM d )[ rect( x/ P μM )rect( x/ W μM ) ] } )
U screen ( X,Y )=exp[ ik( z+Z ) ] U i ( x,y ) T μM ( x,y ) ×exp{ ik( xX+yY )/( z+Z ) }dxdy/iλ( z+Z ) =exp[ ik( z+Z ) ]F[ U i ( x,y ) T μM ( x,y ) ]/iλ( z+Z )
I AM ( X,Y )= W μM 2 P μM 2 [ sin( k W μM X / 2Z ) k W μM X / 2Z ] 2 [ sin( Nk P SLM X / 2Z ) sin( k P SLM X / 2Z ) ] 2 [ sin( N * k P μM X / 2Z ) sin( k P μM X / 2Z ) ] 2
I PM ( X,Y )= 1 P μM 2 { W μM sinc( k W μM X / 2Z ) +exp[ ik( n 0 n μM )d ] ( 1R ) n 0 / n μM ×exp( ik P μM X / 2Z αd /2 )( P μM W μM )sinc[ k( P μM W μM )X / 2Z ] } 2 × [ sin( Nk P SLM X / 2Z ) sin( k P SLM X / 2Z ) ] 2 [ sin( N * k P μM X / 2Z ) sin( k P μM X / 2Z ) ] 2
U CGH ( x,y )=exp( ik R rec ) U CGH ( ξ,η )exp{ ik[ ( xξ ) 2 + ( yη ) 2 ]/2 R rec }dξdη /( iλ R rec ) +Aexp[ ik( xsinθ+ysinϕ ) ]

Metrics