Abstract

In this work glass rods of (MgxCa1-x)3Al2Si3O12 (x = 0, 0.5 and 1) doped with 1 wt% Nd2O3 were produced by the laser floating zone technique. Thermo-mechanical and spectroscopic properties have been evaluated. The three glass samples present good thermo-mechanical properties, with similar hardness, toughness and glass transition temperatures. The spectroscopic characterization shows spectral shifts in absorption and emission spectra. These spectral shifts together with Judd-Ofelt intensity parameters and ionic packing ratio have been used to investigate the local structure surrounding the Nd3+ ions and the covalency of the Nd-O bond. All obtained results agree and confirm the higher covalency of the Nd-O bond in the Ca3Al2Si3O12 glass.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

21 October 2015: A correction was made to the author listing.


OSA Recommended Articles
Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies

Hiromichi Takebe, Kiminori Yoshino, Takahiro Murata, Kenji Morinaga, Jason Hector, William S. Brocklesby, Daniel W. Hewak, Ji Wang, and David N. Payne
Appl. Opt. 36(24) 5839-5843 (1997)

Synthesis, theoretical analysis, and characterization of highly Er3+ doped fluoroaluminate–tellurite glass with 2.7 μm emission

Ying Tian, Xufeng Jing, Bingpeng Li, Pengcheng Li, Yinyan Li, Ruoshan Lei, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 6(10) 3274-3285 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass for Photonic Devices: Photoinduced Structures and their Application (Springer-Verlag, 2001).
  2. J. H. Campbel, J. S. Hayden, and A. J. Marker, “High-power solid-state lasers from a laser glass perspective,” Int. J. Appl. Glass Sci. 2(1), 3–29 (2011).
    [Crossref]
  3. E. Snitzer, “Optical maser action of Nd+3 in a barium crown glass,” Phys. Rev. Lett. 7(12), 444–446 (1961).
    [Crossref]
  4. E. M. Erbe and D. E. Day, “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications,” J. Am. Ceram. Soc. 73(9), 2708–2713 (1990).
    [Crossref]
  5. E. V. Uhlmann, M. C. Weinberg, N. J. Kreidl, L. L. Burgner, R. Zanoni, and K. H. Church, “Spectroscopic properties of rare-earth-doped calcium-aluminate-based glasses,” J. Non-Cryst. Solids 178, 15–22 (1994).
    [Crossref]
  6. S. L. Lin and C. S. Hwang, “Structures of CeO2-Al2O3-SiO2 glasses,” J. Non-Cryst. Solids 202(1-2), 61–67 (1996).
    [Crossref]
  7. M. L. Baesso, A. C. Bento, L. C. M. Miranda, D. F. de Souza, J. A. Sampaio, and L. A. O. Nunes, “Rare-earth doped low silica calcium aluminosilicate glasses for near and mid infrared applications,” J. Non-Cryst. Solids 276(1-3), 8–18 (2000).
    [Crossref]
  8. J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Characterization of rare earth aluminosilicate glasses,” J. Non-Cryst. Solids 351(10-11), 863–868 (2005).
    [Crossref]
  9. A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
    [Crossref]
  10. L. Mota, J. A. Sampaio, M. G. da Silva, and H. Vargas, “Assessment of nonradiative relaxation time and characteristic diffusion time of neodymium, erbium and cobalt doped low silica calcium aluminosilicate glasses,” Chem. Phys. Lett. 502(1-3), 69–71 (2011).
    [Crossref]
  11. A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
    [Crossref]
  12. M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
    [Crossref]
  13. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
    [Crossref]
  14. F. R. Boyd and J. L. England, Pyrope (Carnegie Institution of Washington, 1959).
  15. F. R. Boyd, J. L. England, and B. T. C. Davids, “Effects of pressure on the melting and polymorphism of Enstatite, MgSiO3,” J. Geophys. Res. 69(10), 2101–2109 (1964).
    [Crossref]
  16. T. Irifune and E. Ohtani, “Melting of Pyrope Mg3Al2Si3O12 up to 10 GPa: possibility of a pressure-induced structural change in Pyrope melt,” J. Geophys. Res. 91(B9), 9357–9366 (1986).
    [Crossref]
  17. J. Ganguly, W. Cheng, and H. StC. O’Neill, “Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties,” Am. Mineral. 78, 583–593 (1993).
  18. J. Zhang and C. Herzberg, “Melting Pyrope, Mg3Al2Si3O12 at 7-16 GPa,” Am. Mineral. 79, 497–503 (1994).
  19. S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
    [Crossref]
  20. E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
    [Crossref]
  21. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
  22. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
    [Crossref] [PubMed]
  23. J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
    [Crossref]
  24. D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
    [Crossref]
  25. F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
    [Crossref]
  26. A. Solomah, Indentation Techniques in Ceramic Materials Characterization: Theory and Practice (Ceramic Transactions, 2003).
  27. G. Padmaja and P. Kistaiah, “Optical characterization of Mn2+: Li2O-K2O-CdO-B2O3 glass system: absorption edge, optical band gap, optical polarizability and optical basicity,” IOP Conf. Series: Mat. Sci. and Eng. 2, 012040 (2009).
    [Crossref]
  28. M. J. Weber, “Glass for Neodymium glasses,” J. Non-Cryst. Solids 42(1-3), 189–196 (1980).
    [Crossref]
  29. Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
    [Crossref]
  30. H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
    [Crossref]
  31. D. E. Henrie and G. R. Chopin, “Environmental effects on f-f transitions. III. Hypersensitivity in some complexes of trivalent Neodymium,” J. Chem. Phys. 49(2), 477–481 (1968).
    [Crossref]
  32. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  33. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  34. J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
    [Crossref]
  35. W.T. Carnall, H. Crosswhite, and H.M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3 (Argonne National Laboratory Rept. No ANL-78-XX-95, 1978).
  36. T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of Neodymium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
    [Crossref]
  37. W. F. Krupke, “Induced-emission cross sections in Neodymium laser glasses,” IEEE J. Quantum Electron. QE-10(4), 450–457 (1974).
    [Crossref]
  38. M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
    [Crossref]
  39. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
    [Crossref] [PubMed]
  40. S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameter of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B 48(14), 3081–3086 (1993).
    [Crossref]
  41. H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
    [Crossref]
  42. H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
    [Crossref]
  43. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  44. L. A. Riesberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” Prog. Optics 14, 89–159 (1975).
  45. C. Brecher, L. A. Riesberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18(10), 5799–5811 (1978).
    [Crossref]

2011 (6)

J. H. Campbel, J. S. Hayden, and A. J. Marker, “High-power solid-state lasers from a laser glass perspective,” Int. J. Appl. Glass Sci. 2(1), 3–29 (2011).
[Crossref]

L. Mota, J. A. Sampaio, M. G. da Silva, and H. Vargas, “Assessment of nonradiative relaxation time and characteristic diffusion time of neodymium, erbium and cobalt doped low silica calcium aluminosilicate glasses,” Chem. Phys. Lett. 502(1-3), 69–71 (2011).
[Crossref]

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

2008 (2)

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

2006 (2)

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

2005 (2)

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Characterization of rare earth aluminosilicate glasses,” J. Non-Cryst. Solids 351(10-11), 863–868 (2005).
[Crossref]

2000 (1)

M. L. Baesso, A. C. Bento, L. C. M. Miranda, D. F. de Souza, J. A. Sampaio, and L. A. O. Nunes, “Rare-earth doped low silica calcium aluminosilicate glasses for near and mid infrared applications,” J. Non-Cryst. Solids 276(1-3), 8–18 (2000).
[Crossref]

1998 (1)

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

1997 (1)

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

1996 (1)

S. L. Lin and C. S. Hwang, “Structures of CeO2-Al2O3-SiO2 glasses,” J. Non-Cryst. Solids 202(1-2), 61–67 (1996).
[Crossref]

1995 (1)

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

1994 (3)

J. Zhang and C. Herzberg, “Melting Pyrope, Mg3Al2Si3O12 at 7-16 GPa,” Am. Mineral. 79, 497–503 (1994).

E. V. Uhlmann, M. C. Weinberg, N. J. Kreidl, L. L. Burgner, R. Zanoni, and K. H. Church, “Spectroscopic properties of rare-earth-doped calcium-aluminate-based glasses,” J. Non-Cryst. Solids 178, 15–22 (1994).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

1993 (3)

J. Ganguly, W. Cheng, and H. StC. O’Neill, “Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties,” Am. Mineral. 78, 583–593 (1993).

Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
[Crossref]

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameter of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B 48(14), 3081–3086 (1993).
[Crossref]

1992 (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

1990 (2)

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[Crossref]

E. M. Erbe and D. E. Day, “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications,” J. Am. Ceram. Soc. 73(9), 2708–2713 (1990).
[Crossref]

1986 (1)

T. Irifune and E. Ohtani, “Melting of Pyrope Mg3Al2Si3O12 up to 10 GPa: possibility of a pressure-induced structural change in Pyrope melt,” J. Geophys. Res. 91(B9), 9357–9366 (1986).
[Crossref]

1982 (2)

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[Crossref]

T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of Neodymium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
[Crossref]

1980 (1)

M. J. Weber, “Glass for Neodymium glasses,” J. Non-Cryst. Solids 42(1-3), 189–196 (1980).
[Crossref]

1978 (1)

C. Brecher, L. A. Riesberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18(10), 5799–5811 (1978).
[Crossref]

1976 (2)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[Crossref]

1975 (1)

L. A. Riesberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” Prog. Optics 14, 89–159 (1975).

1974 (1)

W. F. Krupke, “Induced-emission cross sections in Neodymium laser glasses,” IEEE J. Quantum Electron. QE-10(4), 450–457 (1974).
[Crossref]

1968 (1)

D. E. Henrie and G. R. Chopin, “Environmental effects on f-f transitions. III. Hypersensitivity in some complexes of trivalent Neodymium,” J. Chem. Phys. 49(2), 477–481 (1968).
[Crossref]

1964 (1)

F. R. Boyd, J. L. England, and B. T. C. Davids, “Effects of pressure on the melting and polymorphism of Enstatite, MgSiO3,” J. Geophys. Res. 69(10), 2101–2109 (1964).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

1961 (1)

E. Snitzer, “Optical maser action of Nd+3 in a barium crown glass,” Phys. Rev. Lett. 7(12), 444–446 (1961).
[Crossref]

Angell, C. A.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[Crossref]

Baesso, M. L.

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

M. L. Baesso, A. C. Bento, L. C. M. Miranda, D. F. de Souza, J. A. Sampaio, and L. A. O. Nunes, “Rare-earth doped low silica calcium aluminosilicate glasses for near and mid infrared applications,” J. Non-Cryst. Solids 276(1-3), 8–18 (2000).
[Crossref]

Barboza, M. J.

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

Bento, A. C.

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

M. L. Baesso, A. C. Bento, L. C. M. Miranda, D. F. de Souza, J. A. Sampaio, and L. A. O. Nunes, “Rare-earth doped low silica calcium aluminosilicate glasses for near and mid infrared applications,” J. Non-Cryst. Solids 276(1-3), 8–18 (2000).
[Crossref]

Bettinelli, M.

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

Boyd, F. R.

F. R. Boyd, J. L. England, and B. T. C. Davids, “Effects of pressure on the melting and polymorphism of Enstatite, MgSiO3,” J. Geophys. Res. 69(10), 2101–2109 (1964).
[Crossref]

Brecher, C.

C. Brecher, L. A. Riesberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18(10), 5799–5811 (1978).
[Crossref]

Bressiani, A. H. A.

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Characterization of rare earth aluminosilicate glasses,” J. Non-Cryst. Solids 351(10-11), 863–868 (2005).
[Crossref]

Bressiani, J. C.

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Characterization of rare earth aluminosilicate glasses,” J. Non-Cryst. Solids 351(10-11), 863–868 (2005).
[Crossref]

Burgner, L. L.

E. V. Uhlmann, M. C. Weinberg, N. J. Kreidl, L. L. Burgner, R. Zanoni, and K. H. Church, “Spectroscopic properties of rare-earth-doped calcium-aluminate-based glasses,” J. Non-Cryst. Solids 178, 15–22 (1994).
[Crossref]

Campbel, J. H.

J. H. Campbel, J. S. Hayden, and A. J. Marker, “High-power solid-state lasers from a laser glass perspective,” Int. J. Appl. Glass Sci. 2(1), 3–29 (2011).
[Crossref]

Cheng, W.

J. Ganguly, W. Cheng, and H. StC. O’Neill, “Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties,” Am. Mineral. 78, 583–593 (1993).

Choi, J. H.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Chopin, G. R.

D. E. Henrie and G. R. Chopin, “Environmental effects on f-f transitions. III. Hypersensitivity in some complexes of trivalent Neodymium,” J. Chem. Phys. 49(2), 477–481 (1968).
[Crossref]

Church, K. H.

E. V. Uhlmann, M. C. Weinberg, N. J. Kreidl, L. L. Burgner, R. Zanoni, and K. H. Church, “Spectroscopic properties of rare-earth-doped calcium-aluminate-based glasses,” J. Non-Cryst. Solids 178, 15–22 (1994).
[Crossref]

da Silva, M. G.

L. Mota, J. A. Sampaio, M. G. da Silva, and H. Vargas, “Assessment of nonradiative relaxation time and characteristic diffusion time of neodymium, erbium and cobalt doped low silica calcium aluminosilicate glasses,” Chem. Phys. Lett. 502(1-3), 69–71 (2011).
[Crossref]

Davids, B. T. C.

F. R. Boyd, J. L. England, and B. T. C. Davids, “Effects of pressure on the melting and polymorphism of Enstatite, MgSiO3,” J. Geophys. Res. 69(10), 2101–2109 (1964).
[Crossref]

Day, D. E.

E. M. Erbe and D. E. Day, “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications,” J. Am. Ceram. Soc. 73(9), 2708–2713 (1990).
[Crossref]

de Souza, D. F.

M. L. Baesso, A. C. Bento, L. C. M. Miranda, D. F. de Souza, J. A. Sampaio, and L. A. O. Nunes, “Rare-earth doped low silica calcium aluminosilicate glasses for near and mid infrared applications,” J. Non-Cryst. Solids 276(1-3), 8–18 (2000).
[Crossref]

Domanicka, A.

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

Ehrt, D.

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

England, J. L.

F. R. Boyd, J. L. England, and B. T. C. Davids, “Effects of pressure on the melting and polymorphism of Enstatite, MgSiO3,” J. Geophys. Res. 69(10), 2101–2109 (1964).
[Crossref]

Erbe, E. M.

E. M. Erbe and D. E. Day, “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications,” J. Am. Ceram. Soc. 73(9), 2708–2713 (1990).
[Crossref]

Ester, F. J.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

Farias, A. M.

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

Galusek, D.

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

Gamaly, E. G.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

Ganguly, J.

J. Ganguly, W. Cheng, and H. StC. O’Neill, “Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties,” Am. Mineral. 78, 583–593 (1993).

Gautron, L.

S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
[Crossref]

Glezer, E.

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Greaux, S.

S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
[Crossref]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

Hanada, T.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameter of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B 48(14), 3081–3086 (1993).
[Crossref]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Hayden, J. S.

J. H. Campbel, J. S. Hayden, and A. J. Marker, “High-power solid-state lasers from a laser glass perspective,” Int. J. Appl. Glass Sci. 2(1), 3–29 (2011).
[Crossref]

Henrie, D. E.

D. E. Henrie and G. R. Chopin, “Environmental effects on f-f transitions. III. Hypersensitivity in some complexes of trivalent Neodymium,” J. Chem. Phys. 49(2), 477–481 (1968).
[Crossref]

Herzberg, C.

J. Zhang and C. Herzberg, “Melting Pyrope, Mg3Al2Si3O12 at 7-16 GPa,” Am. Mineral. 79, 497–503 (1994).

Hwang, C. S.

S. L. Lin and C. S. Hwang, “Structures of CeO2-Al2O3-SiO2 glasses,” J. Non-Cryst. Solids 202(1-2), 61–67 (1996).
[Crossref]

Irifune, T.

S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
[Crossref]

T. Irifune and E. Ohtani, “Melting of Pyrope Mg3Al2Si3O12 up to 10 GPa: possibility of a pressure-induced structural change in Pyrope melt,” J. Geophys. Res. 91(B9), 9357–9366 (1986).
[Crossref]

Izumitani, T.

T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of Neodymium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
[Crossref]

Jacobs, R. R.

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Juodkazis, S.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

Klement, R.

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

Kono, Y.

S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
[Crossref]

Kozankova, J.

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

Kraxner, J.

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

Kreidl, N. J.

E. V. Uhlmann, M. C. Weinberg, N. J. Kreidl, L. L. Burgner, R. Zanoni, and K. H. Church, “Spectroscopic properties of rare-earth-doped calcium-aluminate-based glasses,” J. Non-Cryst. Solids 178, 15–22 (1994).
[Crossref]

Krupke, W. F.

W. F. Krupke, “Induced-emission cross sections in Neodymium laser glasses,” IEEE J. Quantum Electron. QE-10(4), 450–457 (1974).
[Crossref]

Kunimoto, T.

S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
[Crossref]

Kuroda, H.

T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of Neodymium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
[Crossref]

Lepienski, C. M.

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

Lin, S. L.

S. L. Lin and C. S. Hwang, “Structures of CeO2-Al2O3-SiO2 glasses,” J. Non-Cryst. Solids 202(1-2), 61–67 (1996).
[Crossref]

Llorca, J.

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

Luther-Davis, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

Marchi, J.

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Characterization of rare earth aluminosilicate glasses,” J. Non-Cryst. Solids 351(10-11), 863–868 (2005).
[Crossref]

Margaryan, A.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Marker, A. J.

J. H. Campbel, J. S. Hayden, and A. J. Marker, “High-power solid-state lasers from a laser glass perspective,” Int. J. Appl. Glass Sci. 2(1), 3–29 (2011).
[Crossref]

Mazur, E.

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Medina, A. N.

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

Menguy, N.

S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
[Crossref]

Miranda, L. C. M.

M. L. Baesso, A. C. Bento, L. C. M. Miranda, D. F. de Souza, J. A. Sampaio, and L. A. O. Nunes, “Rare-earth doped low silica calcium aluminosilicate glasses for near and mid infrared applications,” J. Non-Cryst. Solids 276(1-3), 8–18 (2000).
[Crossref]

Misawa, H.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

Mizeikis, V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

Morais, D. S.

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Characterization of rare earth aluminosilicate glasses,” J. Non-Cryst. Solids 351(10-11), 863–868 (2005).
[Crossref]

Morinaga, K.

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
[Crossref]

Mota, L.

L. Mota, J. A. Sampaio, M. G. da Silva, and H. Vargas, “Assessment of nonradiative relaxation time and characteristic diffusion time of neodymium, erbium and cobalt doped low silica calcium aluminosilicate glasses,” Chem. Phys. Lett. 502(1-3), 69–71 (2011).
[Crossref]

Nageno, Y.

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
[Crossref]

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

Nishiyama, N.

S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
[Crossref]

Nunes, L. A. O.

M. L. Baesso, A. C. Bento, L. C. M. Miranda, D. F. de Souza, J. A. Sampaio, and L. A. O. Nunes, “Rare-earth doped low silica calcium aluminosilicate glasses for near and mid infrared applications,” J. Non-Cryst. Solids 276(1-3), 8–18 (2000).
[Crossref]

O’Neill, H. StC.

J. Ganguly, W. Cheng, and H. StC. O’Neill, “Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties,” Am. Mineral. 78, 583–593 (1993).

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Ohfuji, H.

S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
[Crossref]

Ohtani, E.

T. Irifune and E. Ohtani, “Melting of Pyrope Mg3Al2Si3O12 up to 10 GPa: possibility of a pressure-induced structural change in Pyrope melt,” J. Geophys. Res. 91(B9), 9357–9366 (1986).
[Crossref]

Ohyagi, T.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameter of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B 48(14), 3081–3086 (1993).
[Crossref]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Oliete, P. B.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

Orera, V. M.

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

Peña, J. I.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

Pentrak, M.

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

Polovka, M.

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

Prnova, A.

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

Riesberg, L. A.

C. Brecher, L. A. Riesberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18(10), 5799–5811 (1978).
[Crossref]

L. A. Riesberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” Prog. Optics 14, 89–159 (1975).

Rode, A. V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

Rohling, J. H.

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

Sakai, O. A.

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

Sampaio, J. A.

L. Mota, J. A. Sampaio, M. G. da Silva, and H. Vargas, “Assessment of nonradiative relaxation time and characteristic diffusion time of neodymium, erbium and cobalt doped low silica calcium aluminosilicate glasses,” Chem. Phys. Lett. 502(1-3), 69–71 (2011).
[Crossref]

M. L. Baesso, A. C. Bento, L. C. M. Miranda, D. F. de Souza, J. A. Sampaio, and L. A. O. Nunes, “Rare-earth doped low silica calcium aluminosilicate glasses for near and mid infrared applications,” J. Non-Cryst. Solids 276(1-3), 8–18 (2000).
[Crossref]

Schneider, J.

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Characterization of rare earth aluminosilicate glasses,” J. Non-Cryst. Solids 351(10-11), 863–868 (2005).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Shi, F. G.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Simurka, P.

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

Snitzer, E.

E. Snitzer, “Optical maser action of Nd+3 in a barium crown glass,” Phys. Rev. Lett. 7(12), 444–446 (1961).
[Crossref]

Soga, N.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameter of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B 48(14), 3081–3086 (1993).
[Crossref]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Sola, D.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

Speghini, A.

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

Steimacher, A.

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

Takebe, H.

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
[Crossref]

Tanabe, S.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameter of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B 48(14), 3081–3086 (1993).
[Crossref]

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Tikhonchuk, V.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

Toratani, H.

T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of Neodymium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
[Crossref]

Uhlmann, E. V.

E. V. Uhlmann, M. C. Weinberg, N. J. Kreidl, L. L. Burgner, R. Zanoni, and K. H. Church, “Spectroscopic properties of rare-earth-doped calcium-aluminate-based glasses,” J. Non-Cryst. Solids 178, 15–22 (1994).
[Crossref]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

Vargas, H.

L. Mota, J. A. Sampaio, M. G. da Silva, and H. Vargas, “Assessment of nonradiative relaxation time and characteristic diffusion time of neodymium, erbium and cobalt doped low silica calcium aluminosilicate glasses,” Chem. Phys. Lett. 502(1-3), 69–71 (2011).
[Crossref]

Weber, M. J.

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[Crossref]

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[Crossref]

M. J. Weber, “Glass for Neodymium glasses,” J. Non-Cryst. Solids 42(1-3), 189–196 (1980).
[Crossref]

C. Brecher, L. A. Riesberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18(10), 5799–5811 (1978).
[Crossref]

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[Crossref]

L. A. Riesberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” Prog. Optics 14, 89–159 (1975).

Weinberg, M. C.

E. V. Uhlmann, M. C. Weinberg, N. J. Kreidl, L. L. Burgner, R. Zanoni, and K. H. Church, “Spectroscopic properties of rare-earth-doped calcium-aluminate-based glasses,” J. Non-Cryst. Solids 178, 15–22 (1994).
[Crossref]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

Zanoni, R.

E. V. Uhlmann, M. C. Weinberg, N. J. Kreidl, L. L. Burgner, R. Zanoni, and K. H. Church, “Spectroscopic properties of rare-earth-doped calcium-aluminate-based glasses,” J. Non-Cryst. Solids 178, 15–22 (1994).
[Crossref]

Zhang, J.

J. Zhang and C. Herzberg, “Melting Pyrope, Mg3Al2Si3O12 at 7-16 GPa,” Am. Mineral. 79, 497–503 (1994).

Ziegler, D. C.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[Crossref]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Am. Mineral. (2)

J. Ganguly, W. Cheng, and H. StC. O’Neill, “Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties,” Am. Mineral. 78, 583–593 (1993).

J. Zhang and C. Herzberg, “Melting Pyrope, Mg3Al2Si3O12 at 7-16 GPa,” Am. Mineral. 79, 497–503 (1994).

Appl. Phys. Lett. (1)

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Bol. Soc. Esp. Ceram. (1)

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

Chem. Phys. Lett. (1)

L. Mota, J. A. Sampaio, M. G. da Silva, and H. Vargas, “Assessment of nonradiative relaxation time and characteristic diffusion time of neodymium, erbium and cobalt doped low silica calcium aluminosilicate glasses,” Chem. Phys. Lett. 502(1-3), 69–71 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[Crossref]

W. F. Krupke, “Induced-emission cross sections in Neodymium laser glasses,” IEEE J. Quantum Electron. QE-10(4), 450–457 (1974).
[Crossref]

Int. J. Appl. Glass Sci. (1)

J. H. Campbel, J. S. Hayden, and A. J. Marker, “High-power solid-state lasers from a laser glass perspective,” Int. J. Appl. Glass Sci. 2(1), 3–29 (2011).
[Crossref]

J. Am. Ceram. Soc. (4)

E. M. Erbe and D. E. Day, “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications,” J. Am. Ceram. Soc. 73(9), 2708–2713 (1990).
[Crossref]

Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

J. Appl. Phys. (1)

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[Crossref]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

D. E. Henrie and G. R. Chopin, “Environmental effects on f-f transitions. III. Hypersensitivity in some complexes of trivalent Neodymium,” J. Chem. Phys. 49(2), 477–481 (1968).
[Crossref]

J. Eur. Ceram. Soc. (1)

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

J. Geophys. Res. (2)

F. R. Boyd, J. L. England, and B. T. C. Davids, “Effects of pressure on the melting and polymorphism of Enstatite, MgSiO3,” J. Geophys. Res. 69(10), 2101–2109 (1964).
[Crossref]

T. Irifune and E. Ohtani, “Melting of Pyrope Mg3Al2Si3O12 up to 10 GPa: possibility of a pressure-induced structural change in Pyrope melt,” J. Geophys. Res. 91(B9), 9357–9366 (1986).
[Crossref]

J. Lumin. (1)

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

J. Non-Cryst. Solids (9)

M. J. Weber, “Glass for Neodymium glasses,” J. Non-Cryst. Solids 42(1-3), 189–196 (1980).
[Crossref]

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[Crossref]

E. V. Uhlmann, M. C. Weinberg, N. J. Kreidl, L. L. Burgner, R. Zanoni, and K. H. Church, “Spectroscopic properties of rare-earth-doped calcium-aluminate-based glasses,” J. Non-Cryst. Solids 178, 15–22 (1994).
[Crossref]

S. L. Lin and C. S. Hwang, “Structures of CeO2-Al2O3-SiO2 glasses,” J. Non-Cryst. Solids 202(1-2), 61–67 (1996).
[Crossref]

M. L. Baesso, A. C. Bento, L. C. M. Miranda, D. F. de Souza, J. A. Sampaio, and L. A. O. Nunes, “Rare-earth doped low silica calcium aluminosilicate glasses for near and mid infrared applications,” J. Non-Cryst. Solids 276(1-3), 8–18 (2000).
[Crossref]

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Characterization of rare earth aluminosilicate glasses,” J. Non-Cryst. Solids 351(10-11), 863–868 (2005).
[Crossref]

A. Steimacher, M. J. Barboza, A. M. Farias, O. A. Sakai, J. H. Rohling, A. C. Bento, M. L. Baesso, A. N. Medina, and C. M. Lepienski, “Preparation of Nd2O3-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization,” J. Non-Cryst. Solids 354(42-44), 4749–4754 (2008).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

T. Izumitani, H. Toratani, and H. Kuroda, “Radiative and nonradiative properties of Neodymium doped silicate and phosphate glasses,” J. Non-Cryst. Solids 47(1), 87–99 (1982).
[Crossref]

Nat. Commun. (1)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445–451 (2011).
[Crossref] [PubMed]

Opt. Mater. (1)

A. Prnova, A. Domanicka, R. Klement, J. Kraxner, M. Polovka, M. Pentrak, D. Galusek, P. Simurka, and J. Kozankova, “Er- and Nd-doped yttrium aluminosilicate glasses: preparation and characterization,” Opt. Mater. 33(12), 1872–1878 (2011).
[Crossref]

Phys. Earth Planet. Inter. (1)

S. Greaux, N. Nishiyama, Y. Kono, L. Gautron, H. Ohfuji, T. Kunimoto, N. Menguy, and T. Irifune, “Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone,” Phys. Earth Planet. Inter. 185(3-4), 89–99 (2011).
[Crossref]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Phys. Rev. B (3)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameter of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B 48(14), 3081–3086 (1993).
[Crossref]

C. Brecher, L. A. Riesberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18(10), 5799–5811 (1978).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

E. Snitzer, “Optical maser action of Nd+3 in a barium crown glass,” Phys. Rev. Lett. 7(12), 444–446 (1961).
[Crossref]

Prog. Mater. Sci. (1)

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

Prog. Optics (1)

L. A. Riesberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” Prog. Optics 14, 89–159 (1975).

Other (5)

A. Solomah, Indentation Techniques in Ceramic Materials Characterization: Theory and Practice (Ceramic Transactions, 2003).

G. Padmaja and P. Kistaiah, “Optical characterization of Mn2+: Li2O-K2O-CdO-B2O3 glass system: absorption edge, optical band gap, optical polarizability and optical basicity,” IOP Conf. Series: Mat. Sci. and Eng. 2, 012040 (2009).
[Crossref]

W.T. Carnall, H. Crosswhite, and H.M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3 (Argonne National Laboratory Rept. No ANL-78-XX-95, 1978).

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass for Photonic Devices: Photoinduced Structures and their Application (Springer-Verlag, 2001).

F. R. Boyd and J. L. England, Pyrope (Carnegie Institution of Washington, 1959).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Room temperature absorption cross-section spectra as a function of wavelength for Ca3Al2Si3O12, Ca1.5Mg1.5Al2Si3O12 and Mg3Al2Si3O12 glasses doped with Nd3+ ions.
Fig. 2
Fig. 2 Normalized 4I9/24F7/2,4S3/2 absorption transition for Ca3Al2Si3O12, and Mg3Al2Si3O12 glasses doped with Nd3+ ions.
Fig. 3
Fig. 3 Normalized fluorescence spectra of the 4F3/24I11/2 laser transition at room temperature measured by exciting the samples at 808 nm.

Tables (6)

Tables Icon

Table 1 Theoretical (T) and experimental composition (E) of the ceramic glasses in at%.

Tables Icon

Table 2 Mechanical and thermal properties of Ca3Al2Si3O12, Ca1.5Mg1.5Al2Si3O12 and Mg3Al2Si3O12 glasses.

Tables Icon

Table 3 Experimental (fexp) and calculated (fcal) oscillator strength of Nd3+ in Ca3Al2(SiO4)3, Mg3Al2(SiO4)3 and Ca1.5Mg1.5Al2(SiO4)3 glasses.

Tables Icon

Table 4 Judd-Ofelt intensity parameters (in 10−20cm2) for Nd3+ in Ca3Al2(SiO4)3, Mg3Al2(SiO4)3 and Ca1.5Mg1.5Al2(SiO4)3 glasses.

Tables Icon

Table 5 Radiative transitions probabilities and branching ratios of Nd3+ in Ca3Al2(SiO4)3, Mg3Al2(SiO4)3 and Ca1.5Mg1.5Al2(SiO4)3 glasses.

Tables Icon

Table 6 Room Temperature emission properties of Nd3+ in Ca3Al2(SiO4)3, Mg3Al2(SiO4)3 and Ca1.5Mg1.5Al2(SiO4)3 glasses.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

f e x p = m c 2 π N e 2 α   ( λ ) λ 2 d λ
f ( J , J ' ) = 8 π 2 m ν 3 h ( 2 J + 1 ) e 2 n 2 [ X e d S e d + X m d S m d ]
S e d ( J , J ' ) = e 2 t = 2 , 4 , 6 Ω t | ( S L ) J U ( t ) ( S ' L ' ) J ' | 2
V P = i 4 3 π r i 3 n i N A   V m
A r a d [ ( S , L ) J ; ( S ' , L ' ) J ' ] = 64 π 4 3 h ( 2 J + 1 ) λ 3 [ n ( n 2 + 2 ) 2 9 ] S e d
β [ ( S , L ) J ; ( S ' , L ' ) J ' ] = A r a d [ ( S , L ) J ; ( S ' , L ' ) J ' ] S ' , L ' , J ' A r a d [ ( S , L ) J ; ( S ' , L ' ) J ' ]
τ R = { S ' , L ' , J ' A r a d [ ( S , L ) J ; ( S ' , L ' ) J ' ] } 1
η = τ f / τ R
σ P ( λ P ) = λ P 4 8 π c n 2 Δ λ eff A [ ( F 4 3 / 2 ) ; ( I 4 11 / 2 ) ]

Metrics