Abstract

A partial etching mechanism is proposed to meet the requirement for low-visibility patterning of silver nanowire (AgNW)-based transparent conductive electrodes (TCEs) by reducing the difference in optical properties between conductive and nonconductive regions of the pattern. Using the finite difference time domain (FDTD) method, etched geometries that provide the smallest difference in transmittance after etching are theoretically determined. A sodium hypochlorite-based etchant capable that allows the etched geometry to be varied by controlling the pH is used to create a low-visibility pattern with a transmittance and haze difference of 0.07 and 0.04%, respectively. To the best of our knowledge, this is the first time that a partial etching mechanism such as this has been studied in relation to AgNW-based TCEs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flexibility and non-destructive conductivity measurements of Ag nanowire based transparent conductive films via terahertz time domain spectroscopy

Gyujeong Hwang, Soner Balci, M. Zeki Güngördü, Alex Maleski, Joseph Waters, Sunjong Lee, Sangjun Choi, Kyoungkook Kim, Soohaeng Cho, and Seongsin M. Kim
Opt. Express 25(4) 4500-4508 (2017)

Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film

Mikita Marus, Aliaksandr Hubarevich, Reuben Jeremy Weixiong Lim, Hui Huang, Aliaksandr Smirnov, Hong Wang, Weijun Fan, and Xiao Wei Sun
Opt. Mater. Express 7(3) 1105-1112 (2017)

Polarization properties of silver nanowire/polymer composite films: diattenuation, retardance and depolarization

Takeo Tomiyama, Kensuke Yoshihara, and Hiroshi Yamazaki
Opt. Mater. Express 9(6) 2582-2594 (2019)

References

  • View by:
  • |
  • |
  • |

  1. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
    [Crossref]
  2. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
    [Crossref] [PubMed]
  3. A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: Which material will win?” ACS Nano 4(1), 11–14 (2010).
    [Crossref] [PubMed]
  4. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [Crossref] [PubMed]
  5. M. Spaid, “Wet-processable transparent conductive materials,” Inf. Disp. 28, 10–15 (2012).
  6. Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
    [Crossref]
  7. Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
    [Crossref]
  8. I. M. Wienk, E. E. B. Meuleman, Z. Borneman, Th. Van Den Boomgaard, and C. A. Smolders, “Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone),” J. Polym. Sci. A Polym. Chem. 33(1), 49–54 (1995).
    [Crossref]
  9. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
    [Crossref] [PubMed]
  10. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 2000).
  11. J. Kwon, H. Shim, D. Lim, K. Kang, J. Lee, K. Kim, and S. Kim, “A study on detecting amine gas using chemical characterization of Ag nanowire,” Proc. of 10th IEEE Int. Conf. on Nanotechnology Joint Symposium with Nano Korea 2010, 753–757 (2010).
  12. T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
    [Crossref] [PubMed]
  13. H. Jungbluth, M. Marending, G. De-Deus, B. Sener, and M. Zehnder, “Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin,” J. Endod. 37(5), 693–696 (2011).
    [Crossref] [PubMed]

2014 (1)

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

2012 (1)

M. Spaid, “Wet-processable transparent conductive materials,” Inf. Disp. 28, 10–15 (2012).

2011 (2)

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

H. Jungbluth, M. Marending, G. De-Deus, B. Sener, and M. Zehnder, “Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin,” J. Endod. 37(5), 693–696 (2011).
[Crossref] [PubMed]

2010 (2)

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: Which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

2009 (1)

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

2004 (1)

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

2003 (1)

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

1998 (1)

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
[Crossref]

1995 (1)

I. M. Wienk, E. E. B. Meuleman, Z. Borneman, Th. Van Den Boomgaard, and C. A. Smolders, “Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone),” J. Polym. Sci. A Polym. Chem. 33(1), 49–54 (1995).
[Crossref]

Bach, U.

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
[Crossref]

Blau, W. J.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Bob, B.

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Boland, J. J.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Borneman, Z.

I. M. Wienk, E. E. B. Meuleman, Z. Borneman, Th. Van Den Boomgaard, and C. A. Smolders, “Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone),” J. Polym. Sci. A Polym. Chem. 33(1), 49–54 (1995).
[Crossref]

Chen, Y.

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Chung, C.-H.

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Coleman, J. N.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Comte, P.

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
[Crossref]

Cui, Y.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

De, S.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

De-Deus, G.

H. Jungbluth, M. Marending, G. De-Deus, B. Sener, and M. Zehnder, “Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin,” J. Endod. 37(5), 693–696 (2011).
[Crossref] [PubMed]

Doherty, E. M.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Duan, H.-S.

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Gao, Y.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Gratzel, M.

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
[Crossref]

Hecht, D. S.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Herricks, T.

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

Higgins, T. M.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Hu, L.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Huang, Y.

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Irvin, G.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Jiang, P.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Jungbluth, H.

H. Jungbluth, M. Marending, G. De-Deus, B. Sener, and M. Zehnder, “Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin,” J. Endod. 37(5), 693–696 (2011).
[Crossref] [PubMed]

Kim, H. S.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Kumar, A.

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: Which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

Lee, J.-Y.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Li, G.

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Liu, D. F.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Liu, L. F.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Lupo, D.

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
[Crossref]

Lyons, P. E.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Marending, M.

H. Jungbluth, M. Marending, G. De-Deus, B. Sener, and M. Zehnder, “Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin,” J. Endod. 37(5), 693–696 (2011).
[Crossref] [PubMed]

Mayers, B.

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

Meuleman, E. E. B.

I. M. Wienk, E. E. B. Meuleman, Z. Borneman, Th. Van Den Boomgaard, and C. A. Smolders, “Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone),” J. Polym. Sci. A Polym. Chem. 33(1), 49–54 (1995).
[Crossref]

Moser, J. E.

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
[Crossref]

Nirmalraj, P. N.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

Peumans, P.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Salbeck, J.

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
[Crossref]

Sener, B.

H. Jungbluth, M. Marending, G. De-Deus, B. Sener, and M. Zehnder, “Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin,” J. Endod. 37(5), 693–696 (2011).
[Crossref] [PubMed]

Shen, D. Y.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Smolders, C. A.

I. M. Wienk, E. E. B. Meuleman, Z. Borneman, Th. Van Den Boomgaard, and C. A. Smolders, “Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone),” J. Polym. Sci. A Polym. Chem. 33(1), 49–54 (1995).
[Crossref]

Song, L.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Song, T.-B.

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Spaid, M.

M. Spaid, “Wet-processable transparent conductive materials,” Inf. Disp. 28, 10–15 (2012).

Spreitzer, H.

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
[Crossref]

Sun, Y. G.

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

Tu, K.-N.

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Van Den Boomgaard, Th.

I. M. Wienk, E. E. B. Meuleman, Z. Borneman, Th. Van Den Boomgaard, and C. A. Smolders, “Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone),” J. Polym. Sci. A Polym. Chem. 33(1), 49–54 (1995).
[Crossref]

Wang, C. Y.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Wang, G.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Wang, J. X.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Weissortel, F.

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
[Crossref]

Wienk, I. M.

I. M. Wienk, E. E. B. Meuleman, Z. Borneman, Th. Van Den Boomgaard, and C. A. Smolders, “Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone),” J. Polym. Sci. A Polym. Chem. 33(1), 49–54 (1995).
[Crossref]

Xia, Y. N.

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

Xie, S. S.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Yan, X. Q.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Yang, Y.

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Yang, Y. M.

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Yuan, H. J.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Zehnder, M.

H. Jungbluth, M. Marending, G. De-Deus, B. Sener, and M. Zehnder, “Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin,” J. Endod. 37(5), 693–696 (2011).
[Crossref] [PubMed]

Zhang, J. M.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Zhou, C.

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: Which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

Zhou, W. Y.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

Zhou, Z. P.

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

ACS Nano (4)

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting, films: Extremely high DC to optical conductivity ratios,” ACS Nano 3(7), 1767–1774 (2009).
[Crossref] [PubMed]

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: Which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, and Y. Yang, “Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts,” ACS Nano 8(3), 2804–2811 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Inf. Disp. (1)

M. Spaid, “Wet-processable transparent conductive materials,” Inf. Disp. 28, 10–15 (2012).

J. Endod. (1)

H. Jungbluth, M. Marending, G. De-Deus, B. Sener, and M. Zehnder, “Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin,” J. Endod. 37(5), 693–696 (2011).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, “Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires,” J. Phys. Chem. B 108(34), 12877–12881 (2004).
[Crossref]

J. Polym. Sci. A Polym. Chem. (1)

I. M. Wienk, E. E. B. Meuleman, Z. Borneman, Th. Van Den Boomgaard, and C. A. Smolders, “Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone),” J. Polym. Sci. A Polym. Chem. 33(1), 49–54 (1995).
[Crossref]

Nano Lett. (1)

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003).
[Crossref]

Nature (1)

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
[Crossref]

Other (2)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 2000).

J. Kwon, H. Shim, D. Lim, K. Kang, J. Lee, K. Kim, and S. Kim, “A study on detecting amine gas using chemical characterization of Ag nanowire,” Proc. of 10th IEEE Int. Conf. on Nanotechnology Joint Symposium with Nano Korea 2010, 753–757 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the 3D FDTD simulation setup used to calculate the light scattering behavior for: (a) a single nanowire with a diameter of d and a length of l, and (b) two divided nanowires with a diameter d−Δd and a (l−Δl)/2. Δd and Δl can be regarded as the geometries removed during by partial etching.
Fig. 2
Fig. 2 Simulated optical transmittance and haze with changing diameter and length of an Ag NW: (a) Δl/l = 0.5, (b) Δl/l = 0.3, and (c) Δl/l = 0.1.
Fig. 3
Fig. 3 Optical properties of a patterned Ag NW film after the conventional wet etching using HNO3 and H3PO4.
Fig. 4
Fig. 4 (a) TEM image of AgNWs covered with a PVP layer prior to etching. (b) TEM image of an AgNW following the irregular removal of the PVP layer after 20 min in 5 M HNO3 solution [11]. (c) TEM image of the partial removal of the PVP layer from AgNWs after 10 min in a NaOCl-based etchant (EO-P100, EO Tech) diluted to 3.3 wt% with deionized water. (d) Energy-dispersive X-ray spectroscopy (EDS) map of a PVP layer partially removed by etching with NaOCl showing the presence of Cl exists in the vicinity of the etched Ag.
Fig. 5
Fig. 5 SEM images of patterned AgNW films after partial etching with (a-c) HNO3 and H3PO4 (PMA-17A) and (d-f) NaOCl (EO-P100).
Fig. 6
Fig. 6 Variation in the optical properties of an AgNW film as a function of etching time. SEM images show the AgNW network after partial etching using acidic NaOCl (pH of 4).
Fig. 7
Fig. 7 (a) Change in normalized line over 10 days exposure to an environment of 85 °C and 85% RH for various pattern sizes (10 to 100 μm) with a resistance of 1 GΩ between patterns. (b) Reliability of AgNW electrodes patterned by two different types of etchant when exposed to 85 °C and 85% RH. (c) Demonstration of a touch screen device created using patterned AgNW-based TCEs.

Tables (1)

Tables Icon

Table 1 SEM images and optical properties of AgNW films before and after etching in different solutions.

Metrics