Abstract

A new kind of dynamic dual-foveated imaging system in the infrared band is designed and optimized in this paper. Dual-foveated imaging refers to the variation in spatial resolution at the two selected fields across the image. Such variable resolution imaging system is suitable for a variety of applications including monitoring, recognition, and remote operation of unmanned aerial vehicle. In this system, a transmissive spatial light modulator (SLM) is used as an active optical element which is located near the image plane instead of pupil plane creatively in order to divide the two selected fields.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-cost dynamic real-time foveated imager

Yajun Niu, Jun Chang, Fengxiang Lv, Benlan Shen, and Weilin Chen
Appl. Opt. 56(28) 7915-7920 (2017)

Dual-sensor foveated imaging system

Hong Hua and Sheng Liu
Appl. Opt. 47(3) 317-327 (2008)

Foveated, wide field-of-view imaging system using a liquid crystal spatial light modulator

T. Martinez, D. V. Wick, and S. R. Restaino
Opt. Express 8(10) 555-560 (2001)

References

  • View by:
  • |
  • |
  • |

  1. T. Martinez, D. Wick, and S. Restaino, “Foveated, wide field-of-view imaging system using a liquid crystal spatial light modulator,” Opt. Express 8(10), 555–560 (2001).
    [Crossref] [PubMed]
  2. F. Chi, C. Jun, and H.-B. Yang, “Design of dually foveated imaging optical system,” J. Acta Phys. Sin 64(3), 034201 (2015).
  3. J. Yang, Miami US Patent 7973834 (2011).
  4. H. Hua and S. Liu, “Dual-sensor foveated imaging system,” J. Appl. Opt. 47(3), 317–327 (2008).
    [Crossref] [PubMed]
  5. Y. Qin, Z. Zheng, and H. Hua, “Multi-resolution foveated laparoscope,” in Proceedings of FIO/Laser Science Conference XXVIII, OSA Technical Digest (online) (Optical Society of America), paper FTh1F.4 (2012).
    [Crossref]
  6. W. S. Geisler and J. S. Perry, “Real time foveated multiresolution system for low-bandwidth video communication,” Proc. SPIE 3299, 294–305 (1998).
  7. B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
    [Crossref]
  8. X. Zhao and X. W. Zhao, “Broadband and wide field of view foveated imaging system in space,” J. Opt. Eng. 47(10), 1065–1074 (2008).
  9. D. Wick, T. Martinez, S. Restaino, and B. Stone, “Foveated imaging demonstration,” Opt. Express 10(1), 60–65 (2002).
    [Crossref] [PubMed]
  10. G. Curatu and J. E. Harvey, “Lens design and system optimization for foveated imaging,” Proc. SPIE 7060, 70600P (2008).
  11. G. Curatu and J. E. Harvey, “Analysis and design of wide-angle foveated optical systems based on transmissive liquid crystal spatial light modulators,” J. Opt. Eng. 8(4), 043001 (2009).
  12. M. E. C. Fitzgerald, P. D. R. Gamlin, Y. Zagvazdin, and A. Reiner, “Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: a laser Doppler study,” J. Vis. Neurosci. 13(4), 655–669 (1996).
    [Crossref] [PubMed]

2015 (1)

F. Chi, C. Jun, and H.-B. Yang, “Design of dually foveated imaging optical system,” J. Acta Phys. Sin 64(3), 034201 (2015).

2009 (1)

G. Curatu and J. E. Harvey, “Analysis and design of wide-angle foveated optical systems based on transmissive liquid crystal spatial light modulators,” J. Opt. Eng. 8(4), 043001 (2009).

2008 (3)

X. Zhao and X. W. Zhao, “Broadband and wide field of view foveated imaging system in space,” J. Opt. Eng. 47(10), 1065–1074 (2008).

H. Hua and S. Liu, “Dual-sensor foveated imaging system,” J. Appl. Opt. 47(3), 317–327 (2008).
[Crossref] [PubMed]

G. Curatu and J. E. Harvey, “Lens design and system optimization for foveated imaging,” Proc. SPIE 7060, 70600P (2008).

2007 (1)

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

2002 (1)

2001 (1)

1998 (1)

W. S. Geisler and J. S. Perry, “Real time foveated multiresolution system for low-bandwidth video communication,” Proc. SPIE 3299, 294–305 (1998).

1996 (1)

M. E. C. Fitzgerald, P. D. R. Gamlin, Y. Zagvazdin, and A. Reiner, “Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: a laser Doppler study,” J. Vis. Neurosci. 13(4), 655–669 (1996).
[Crossref] [PubMed]

Andrews, J. R.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Bagwell, B. E.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Chi, F.

F. Chi, C. Jun, and H.-B. Yang, “Design of dually foveated imaging optical system,” J. Acta Phys. Sin 64(3), 034201 (2015).

Cowan, W. D.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Curatu, G.

G. Curatu and J. E. Harvey, “Analysis and design of wide-angle foveated optical systems based on transmissive liquid crystal spatial light modulators,” J. Opt. Eng. 8(4), 043001 (2009).

G. Curatu and J. E. Harvey, “Lens design and system optimization for foveated imaging,” Proc. SPIE 7060, 70600P (2008).

Fitzgerald, M. E. C.

M. E. C. Fitzgerald, P. D. R. Gamlin, Y. Zagvazdin, and A. Reiner, “Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: a laser Doppler study,” J. Vis. Neurosci. 13(4), 655–669 (1996).
[Crossref] [PubMed]

Gamlin, P. D. R.

M. E. C. Fitzgerald, P. D. R. Gamlin, Y. Zagvazdin, and A. Reiner, “Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: a laser Doppler study,” J. Vis. Neurosci. 13(4), 655–669 (1996).
[Crossref] [PubMed]

Geisler, W. S.

W. S. Geisler and J. S. Perry, “Real time foveated multiresolution system for low-bandwidth video communication,” Proc. SPIE 3299, 294–305 (1998).

Harvey, J. E.

G. Curatu and J. E. Harvey, “Analysis and design of wide-angle foveated optical systems based on transmissive liquid crystal spatial light modulators,” J. Opt. Eng. 8(4), 043001 (2009).

G. Curatu and J. E. Harvey, “Lens design and system optimization for foveated imaging,” Proc. SPIE 7060, 70600P (2008).

Hua, H.

H. Hua and S. Liu, “Dual-sensor foveated imaging system,” J. Appl. Opt. 47(3), 317–327 (2008).
[Crossref] [PubMed]

Jun, C.

F. Chi, C. Jun, and H.-B. Yang, “Design of dually foveated imaging optical system,” J. Acta Phys. Sin 64(3), 034201 (2015).

Liu, S.

H. Hua and S. Liu, “Dual-sensor foveated imaging system,” J. Appl. Opt. 47(3), 317–327 (2008).
[Crossref] [PubMed]

Martinez, T.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

D. Wick, T. Martinez, S. Restaino, and B. Stone, “Foveated imaging demonstration,” Opt. Express 10(1), 60–65 (2002).
[Crossref] [PubMed]

T. Martinez, D. Wick, and S. Restaino, “Foveated, wide field-of-view imaging system using a liquid crystal spatial light modulator,” Opt. Express 8(10), 555–560 (2001).
[Crossref] [PubMed]

Payne, D. M.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Perry, J. S.

W. S. Geisler and J. S. Perry, “Real time foveated multiresolution system for low-bandwidth video communication,” Proc. SPIE 3299, 294–305 (1998).

Reiner, A.

M. E. C. Fitzgerald, P. D. R. Gamlin, Y. Zagvazdin, and A. Reiner, “Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: a laser Doppler study,” J. Vis. Neurosci. 13(4), 655–669 (1996).
[Crossref] [PubMed]

Restaino, S.

Restaino, S. R.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Romeo, R.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Spahn, O. B.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Stone, B.

Sweatt, W. C.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Wick, D.

Wick, D. V.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Wilcox, C. C.

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Yang, H.-B.

F. Chi, C. Jun, and H.-B. Yang, “Design of dually foveated imaging optical system,” J. Acta Phys. Sin 64(3), 034201 (2015).

Zagvazdin, Y.

M. E. C. Fitzgerald, P. D. R. Gamlin, Y. Zagvazdin, and A. Reiner, “Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: a laser Doppler study,” J. Vis. Neurosci. 13(4), 655–669 (1996).
[Crossref] [PubMed]

Zhao, X.

X. Zhao and X. W. Zhao, “Broadband and wide field of view foveated imaging system in space,” J. Opt. Eng. 47(10), 1065–1074 (2008).

Zhao, X. W.

X. Zhao and X. W. Zhao, “Broadband and wide field of view foveated imaging system in space,” J. Opt. Eng. 47(10), 1065–1074 (2008).

J. Acta Phys. Sin (1)

F. Chi, C. Jun, and H.-B. Yang, “Design of dually foveated imaging optical system,” J. Acta Phys. Sin 64(3), 034201 (2015).

J. Appl. Opt. (1)

H. Hua and S. Liu, “Dual-sensor foveated imaging system,” J. Appl. Opt. 47(3), 317–327 (2008).
[Crossref] [PubMed]

J. Opt. Eng. (2)

X. Zhao and X. W. Zhao, “Broadband and wide field of view foveated imaging system in space,” J. Opt. Eng. 47(10), 1065–1074 (2008).

G. Curatu and J. E. Harvey, “Analysis and design of wide-angle foveated optical systems based on transmissive liquid crystal spatial light modulators,” J. Opt. Eng. 8(4), 043001 (2009).

J. Vis. Neurosci. (1)

M. E. C. Fitzgerald, P. D. R. Gamlin, Y. Zagvazdin, and A. Reiner, “Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: a laser Doppler study,” J. Vis. Neurosci. 13(4), 655–669 (1996).
[Crossref] [PubMed]

Opt. Express (2)

Proc. SPIE (3)

G. Curatu and J. E. Harvey, “Lens design and system optimization for foveated imaging,” Proc. SPIE 7060, 70600P (2008).

W. S. Geisler and J. S. Perry, “Real time foveated multiresolution system for low-bandwidth video communication,” Proc. SPIE 3299, 294–305 (1998).

B. E. Bagwell, D. V. Wick, W. D. Cowan, O. B. Spahn, W. C. Sweatt, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active zoom imaging for operationally responsive space,” Proc. SPIE 6467, 64670D (2007).
[Crossref]

Other (2)

Y. Qin, Z. Zheng, and H. Hua, “Multi-resolution foveated laparoscope,” in Proceedings of FIO/Laser Science Conference XXVIII, OSA Technical Digest (online) (Optical Society of America), paper FTh1F.4 (2012).
[Crossref]

J. Yang, Miami US Patent 7973834 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Optical 3D layout for dual-foveated imaging system (f/# = 2) with a +/−10 °field-of-view (a) and the separated rays of each fields (b).
Fig. 2
Fig. 2 Fields of interest of State-1, State-2 and State-3.
Fig. 3
Fig. 3 MTF plots and pupil map on the surface of SLM of two FOI of dual-foveated imaging system of State-1.
Fig. 4
Fig. 4 MTF plots and pupil map on the surface of SLM of two FOI of dual-foveated imaging system of State-2.
Fig. 5
Fig. 5 MTF plots and pupil map on the surface of SLM of two FOI of dual-foveated imaging system of State-3.
Fig. 6
Fig. 6 The object used for simulating in CODEV.
Fig. 7
Fig. 7 The simulation image (a), matching map of SLM (b), and detail image (c) of State-1.
Fig. 8
Fig. 8 The simulation image (a), matching map of SLM (b), and detail image (c) of State-2.
Fig. 9
Fig. 9 The simulation image (a), matching map of SLM (b), and detail image (c) of State-3.

Tables (1)

Tables Icon

Table 1 Wavefront analysis without and with correction by SLM of State-1

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

OPD=Δ n z z

Metrics