Abstract

In this paper, we have set up a diode pumped rubidium MOPA system with a chain of two amplifiers. The experimental results show an amplified laser power of 26W with amplification factor of 16.3 and power extraction efficiency of 53% for a single amplifier, and an amplified laser power of 11W with amplification factor of 7.9 and power extraction efficiency of 26% for a chain of two amplifiers. The reason for lower performance of cascade amplification is mainly due to the limited total pump power, which will be not sufficient for efficient pumping when assigned from a single amplifier into two amplifiers. The situation could be well improved by increasing the seed laser power as well as the pump power for each amplifier to realize high efficient saturated amplification. Such MOPA configuration has the potential for scaling high beam quality alkali laser into high powers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission

Zining Yang, Hongyan Wang, Qisheng Lu, Weihong Hua, and Xiaojun Xu
Opt. Express 19(23) 23118-23131 (2011)

Modeling of scaling of a diode longitudinally pumped metastable rare gas with a master oscillator power amplifier

Hanyuan Chen, Sichen Long, Xiahui Tang, Xiangxi Wu, Wei Wang, and Yingxiong Qin
Opt. Express 27(9) 12504-12516 (2019)

Experimental study of diode pumped rubidium amplifier for single higher-order Laguerre-Gaussian modes

Ruiyao Luo, Lei Li, Wenda Cui, Zining Yang, Hongyan Wang, and Xiaojun Xu
Opt. Express 24(12) 13351-13356 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. V. Zhdanov and R. J. Knize, “Reviews of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
    [Crossref]
  2. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: a new class of CW, near-infrared highpower diode pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
    [Crossref]
  3. W. F. Krupke, “Diode pumped alkali lasers (DPALs)-A review (rev 1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  4. F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
    [Crossref]
  5. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
    [Crossref]
  6. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [Crossref] [PubMed]
  7. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
    [Crossref]
  8. B. V. Zhdanov and R. J. Knize, “Efficiency diode pumped cesium vapor amplifier,” Opt. Commun. 281(15–16), 4068–4070 (2008).
    [Crossref]
  9. D. A. Hostutler and W. L. Klennert, “Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier,” Opt. Express 16(11), 8050–8053 (2008).
    [Crossref] [PubMed]
  10. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
    [Crossref]
  11. B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
    [Crossref]
  12. B. Shen, B. Pan, J. Jiao, and C. Xia, “Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers,” Opt. Express 23(15), 19500–19511 (2015).
    [Crossref] [PubMed]
  13. Z. Yang, H. Wang, Q. Lu, W. Hua, and X. Xu, “Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission,” Opt. Express 19(23), 23118–23131 (2011).
    [Crossref] [PubMed]
  14. A. I. Parkhomenko and A. M. Shalagin, “An Alkali Metal Vapor Laser Amplifier,” J. Exp. Theor. Phys. 119(1), 24–35 (2014).
    [Crossref]
  15. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave Rubidium vapor laser,” Opt. Express 16(2), 748–751 (2008).
    [Crossref] [PubMed]
  16. B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diodepumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
    [Crossref]
  17. Z. Li, R. Tan, C. Xu, L. Li, and Z. Zhao, “A linearly-polarized Rubidium vapor laser pumped by atunable laser diode array with an external cavity of a temperature-controlled Volume Bragg Grating,” Chin. Phys. Lett. 30(3), 034202 (2013).
    [Crossref]
  18. Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
    [Crossref]
  19. W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
    [Crossref]

2015 (1)

2014 (2)

2013 (3)

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diodepumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
[Crossref]

Z. Li, R. Tan, C. Xu, L. Li, and Z. Zhao, “A linearly-polarized Rubidium vapor laser pumped by atunable laser diode array with an external cavity of a temperature-controlled Volume Bragg Grating,” Chin. Phys. Lett. 30(3), 034202 (2013).
[Crossref]

2012 (3)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)-A review (rev 1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Reviews of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

2011 (4)

2010 (1)

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
[Crossref]

2008 (3)

2004 (1)

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: a new class of CW, near-infrared highpower diode pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
[Crossref]

2003 (1)

Barmashenko, B. D.

Beach, R. J.

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: a new class of CW, near-infrared highpower diode pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Boyadjian, G.

Chen, F.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Chen, J.

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Eroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Gao, F.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Guo, J.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Guo, L.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Holtgrave, J. C.

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[Crossref]

Hostutler, D. A.

Hua, W.

Jiao, J.

Kanz, V. K.

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: a new class of CW, near-infrared highpower diode pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

Klennert, W. L.

Knize, R. J.

B. V. Zhdanov and R. J. Knize, “Reviews of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Efficiency diode pumped cesium vapor amplifier,” Opt. Commun. 281(15–16), 4068–4070 (2008).
[Crossref]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave Rubidium vapor laser,” Opt. Express 16(2), 748–751 (2008).
[Crossref] [PubMed]

Krupke, W. F.

W. F. Krupke, “Diode pumped alkali lasers (DPALs)-A review (rev 1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: a new class of CW, near-infrared highpower diode pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Li, D.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Li, L.

Z. Li, R. Tan, C. Xu, L. Li, and Z. Zhao, “A linearly-polarized Rubidium vapor laser pumped by atunable laser diode array with an external cavity of a temperature-controlled Volume Bragg Grating,” Chin. Phys. Lett. 30(3), 034202 (2013).
[Crossref]

Li, Y.

Li, Z.

Z. Li, R. Tan, C. Xu, L. Li, and Z. Zhao, “A linearly-polarized Rubidium vapor laser pumped by atunable laser diode array with an external cavity of a temperature-controlled Volume Bragg Grating,” Chin. Phys. Lett. 30(3), 034202 (2013).
[Crossref]

Lu, Q.

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Miller, W. S.

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[Crossref]

Pan, B.

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Parkhomenko, A. I.

A. I. Parkhomenko and A. M. Shalagin, “An Alkali Metal Vapor Laser Amplifier,” J. Exp. Theor. Phys. 119(1), 24–35 (2014).
[Crossref]

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Payne, S. A.

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: a new class of CW, near-infrared highpower diode pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

Perram, G. P.

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[Crossref]

Rosenwaks, S.

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Shaffer, M. K.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
[Crossref]

Shalagin, A. M.

A. I. Parkhomenko and A. M. Shalagin, “An Alkali Metal Vapor Laser Amplifier,” J. Exp. Theor. Phys. 119(1), 24–35 (2014).
[Crossref]

Shen, B.

Stooke, A.

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Sulham, C. V.

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[Crossref]

Tan, R.

Z. Li, R. Tan, C. Xu, L. Li, and Z. Zhao, “A linearly-polarized Rubidium vapor laser pumped by atunable laser diode array with an external cavity of a temperature-controlled Volume Bragg Grating,” Chin. Phys. Lett. 30(3), 034202 (2013).
[Crossref]

Voci, A.

Waichman, K.

Wang, H.

Wang, Y.

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Xia, C.

Xie, J.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Xu, C.

Z. Li, R. Tan, C. Xu, L. Li, and Z. Zhao, “A linearly-polarized Rubidium vapor laser pumped by atunable laser diode array with an external cavity of a temperature-controlled Volume Bragg Grating,” Chin. Phys. Lett. 30(3), 034202 (2013).
[Crossref]

Xu, X.

Yang, G.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Yang, J.

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Yang, Z.

Zhang, L.

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Zhao, Z.

Z. Li, R. Tan, C. Xu, L. Li, and Z. Zhao, “A linearly-polarized Rubidium vapor laser pumped by atunable laser diode array with an external cavity of a temperature-controlled Volume Bragg Grating,” Chin. Phys. Lett. 30(3), 034202 (2013).
[Crossref]

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Reviews of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Efficiency diode pumped cesium vapor amplifier,” Opt. Commun. 281(15–16), 4068–4070 (2008).
[Crossref]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave Rubidium vapor laser,” Opt. Express 16(2), 748–751 (2008).
[Crossref] [PubMed]

Zhu, Q.

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Appl. Phys. B (1)

W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B 103(4), 819–824 (2011).
[Crossref]

Chin. Phys. Lett. (1)

Z. Li, R. Tan, C. Xu, L. Li, and Z. Zhao, “A linearly-polarized Rubidium vapor laser pumped by atunable laser diode array with an external cavity of a temperature-controlled Volume Bragg Grating,” Chin. Phys. Lett. 30(3), 034202 (2013).
[Crossref]

J. Exp. Theor. Phys. (1)

A. I. Parkhomenko and A. M. Shalagin, “An Alkali Metal Vapor Laser Amplifier,” J. Exp. Theor. Phys. 119(1), 24–35 (2014).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

B. V. Zhdanov and R. J. Knize, “Efficiency diode pumped cesium vapor amplifier,” Opt. Commun. 281(15–16), 4068–4070 (2008).
[Crossref]

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “Reviews of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optik (Stuttg.) (1)

F. Gao, F. Chen, J. Xie, D. Li, L. Zhang, G. Yang, J. Guo, and L. Guo, “Review on diode-pumped alkali vapor laser,” Optik (Stuttg.) 124(20), 4353–4358 (2013).
[Crossref]

Proc. SPIE (2)

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: a new class of CW, near-infrared highpower diode pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581(75810F), 75810F (2010).
[Crossref]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)-A review (rev 1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of our Rb MOPA configuration, the green line represents the diode pump light and the red line represents the alkali laser.
Fig. 2
Fig. 2 Dependence of amplification factor on amplifier temperature.
Fig. 3
Fig. 3 Dependence of amplified laser power and amplification factor on seed laser power.
Fig. 4
Fig. 4 Amplified laser power of the diode pumped Rb amplifier chains, the ratios of pump power (64W) assignment for the first and second amplifiers are (from top to bottom) 2:1, 1:1 and 1:2 respectively.

Metrics