Abstract

Distances to multiple targets are measured simultaneously using a single femtosecond pulse laser split through a diffractive optical element. Pulse arrival from each target is detected by means of balanced cross-correlation of second harmonics generated using a PPKTP crystal. Time-of-flight of each returning pulse is counted by dual-comb interferometry with 0.01 ps timing resolution at a 2 kHz update rate. This multi-target ranging capability is demonstrated by performing multi-degree of freedom (m-DOF) sensing of a rigid-body motion simulating a satellite operating in orbit. This method is applicable to diverse terrestrial and space applications requiring concurrent multiple distance measurements with high precision.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers

Haosen Shi, Youjian Song, Fei Liang, Liming Xu, Minglie Hu, and Chingyue Wang
Opt. Express 23(11) 14057-14069 (2015)

Construction of traceable absolute distances network for multilateration with a femtosecond pulse laser

Yang Liu, Jiarui Lin, Linghui Yang, Yilin Wang, and Jigui Zhu
Opt. Express 26(20) 26618-26632 (2018)

Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser

Ki-Nam Joo and Seung-Woo Kim
Opt. Express 14(13) 5954-5960 (2006)

References

  • View by:
  • |
  • |
  • |

  1. C. Fridlund, “Darwin – The Infrared Space Interferometry Mission,” ESA Bull. 103, 20–25 (2000).
  2. ESA, “XEUS: X-ray evolving-universe spectroscopy,” ESACDF Study Report CDF- 31(A), 1–237 (2004).
  3. J. Dale, B. Hughes, A. J. Lancaster, A. J. Lewis, A. J. H. Reichold, and M. S. Warden, “Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells,” Opt. Express 22(20), 24869–24893 (2014).
    [Crossref] [PubMed]
  4. J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
    [Crossref]
  5. F.-J. Shiou and M.-X. Liu, “Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs),” Opt. Lasers Eng. 47(1), 7–18 (2009).
    [Crossref]
  6. S.-W. Kim, H.-G. Rhee, and J.-Y. Chu, “Volumetric phase-measuring interferometer for three-dimensional coordinate metrology,” Precis. Eng. 27(2), 205–215 (2003).
    [Crossref]
  7. D. Zhang, S. Rolt, and P. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541–2547 (2005).
    [Crossref]
  8. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. 26, 351–391. (Elsevier, 1988).
  9. I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
    [Crossref]
  10. E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
    [Crossref]
  11. S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [Crossref]
  12. S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  13. N. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  14. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  15. Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
    [Crossref]
  16. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref] [PubMed]
  17. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref] [PubMed]
  18. I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  19. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
    [Crossref]
  20. G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
    [Crossref]
  21. J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
    [Crossref] [PubMed]
  22. S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
    [Crossref]
  23. G. Wang, Y.-S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S.-W. Kim, and Y.-J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
    [Crossref] [PubMed]
  24. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  25. J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
    [Crossref]
  26. H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
    [Crossref] [PubMed]
  27. H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23(11), 14057–14069 (2015).
    [Crossref] [PubMed]
  28. ISO, “Guide to the expression of uncertainty in measurement (GUM 1995),” ISO/IEC Guide 98–3 (2008).

2015 (2)

2014 (4)

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

J. Dale, B. Hughes, A. J. Lancaster, A. J. Lewis, A. J. H. Reichold, and M. S. Warden, “Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells,” Opt. Express 22(20), 24869–24893 (2014).
[Crossref] [PubMed]

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

2013 (1)

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

2012 (2)

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

2011 (1)

N. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

2010 (2)

S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

2009 (4)

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

F.-J. Shiou and M.-X. Liu, “Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs),” Opt. Lasers Eng. 47(1), 7–18 (2009).
[Crossref]

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

2006 (2)

2005 (1)

D. Zhang, S. Rolt, and P. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541–2547 (2005).
[Crossref]

2004 (1)

2003 (1)

S.-W. Kim, H.-G. Rhee, and J.-Y. Chu, “Volumetric phase-measuring interferometer for three-dimensional coordinate metrology,” Precis. Eng. 27(2), 205–215 (2003).
[Crossref]

2000 (2)

1998 (1)

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

1988 (1)

E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
[Crossref]

Bae, E.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Brecher, C.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Chu, J.-Y.

S.-W. Kim, H.-G. Rhee, and J.-Y. Chu, “Volumetric phase-measuring interferometer for three-dimensional coordinate metrology,” Precis. Eng. 27(2), 205–215 (2003).
[Crossref]

Chun, B. J.

Coddington, I.

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Cohen, D.

E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
[Crossref]

Coldren, L.

E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
[Crossref]

Dale, J.

Diddams, S.

Donmez, M.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Fridlund, C.

C. Fridlund, “Darwin – The Infrared Space Interferometry Mission,” ESA Bull. 103, 20–25 (2000).

Fujima, I.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Han, S.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Härtig, F.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Hu, M.

Hughes, B.

Hyun, S.

Iwasaki, S.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Jang, Y.-S.

G. Wang, Y.-S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S.-W. Kim, and Y.-J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

Jedrzejewski, J.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Jin, J.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Joo, K.-N.

Kang, C.-S.

Kang, H. J.

Kim, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Kim, S.-W.

G. Wang, Y.-S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S.-W. Kim, and Y.-J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

S.-W. Kim, H.-G. Rhee, and J.-Y. Chu, “Volumetric phase-measuring interferometer for three-dimensional coordinate metrology,” Precis. Eng. 27(2), 205–215 (2003).
[Crossref]

Kim, Y.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Kim, Y.-J.

G. Wang, Y.-S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S.-W. Kim, and Y.-J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Knapp, W.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Lancaster, A. J.

Lee, J.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lewis, A. J.

Li, Y.

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Liang, F.

Liu, M.-X.

F.-J. Shiou and M.-X. Liu, “Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs),” Opt. Lasers Eng. 47(1), 7–18 (2009).
[Crossref]

Maropoulos, P.

D. Zhang, S. Rolt, and P. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541–2547 (2005).
[Crossref]

Matsumoto, H.

Mayr, J.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Minoshima, K.

Moriwaki, T.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Nenadovic, L.

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N.

N. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Ni, K.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Reichold, A. J. H.

Rhee, H.-G.

S.-W. Kim, H.-G. Rhee, and J.-Y. Chu, “Volumetric phase-measuring interferometer for three-dimensional coordinate metrology,” Precis. Eng. 27(2), 205–215 (2003).
[Crossref]

Rolt, S.

D. Zhang, S. Rolt, and P. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541–2547 (2005).
[Crossref]

Schmitt, R.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Seta, K.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Shen, L.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Shi, H.

Shiou, F.-J.

F.-J. Shiou and M.-X. Liu, “Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs),” Opt. Lasers Eng. 47(1), 7–18 (2009).
[Crossref]

Shore, P.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Song, Y.

Strzelecki, E.

E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
[Crossref]

Swann, W.

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Uhlmann, E.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Wang, C.

Wang, G.

Warden, M. S.

Wegener, K.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Wei, H.

Wendt, K.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Wu, G.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Wu, X.

Würz, T.

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

Xu, L.

Yan, S.

Yang, H.

Ye, J.

Zeng, X.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Zhang, D.

D. Zhang, S. Rolt, and P. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541–2547 (2005).
[Crossref]

Zhang, H.

Zhou, Q.

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

G. Wu, Q. Zhou, L. Shen, K. Ni, X. Zeng, and Y. Li, “Experimental optimization of the repetition rate difference in dual-comb ranging system,” Appl. Phys. Express 7(10), 106602 (2014).
[Crossref]

CIRP Ann.-Manuf. Technol. (1)

J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, “Thermal issues in machine tools,” CIRP Ann.-Manuf. Technol. 61(2), 771–791 (2012).
[Crossref]

ESA Bull. (1)

C. Fridlund, “Darwin – The Infrared Space Interferometry Mission,” ESA Bull. 103, 20–25 (2000).

J. Lightwave Technol. (1)

E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6(10), 1610–1618 (1988).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (5)

D. Zhang, S. Rolt, and P. Maropoulos, “Modelling and optimization of novel laser multilateration schemes for high-precision applications,” Meas. Sci. Technol. 16(12), 2541–2547 (2005).
[Crossref]

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23(6), 065203 (2012).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Nat. Photonics (4)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

N. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Opt. Eng. (1)

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53(12), 122403 (2014).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

F.-J. Shiou and M.-X. Liu, “Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs),” Opt. Lasers Eng. 47(1), 7–18 (2009).
[Crossref]

Opt. Lett. (1)

Precis. Eng. (1)

S.-W. Kim, H.-G. Rhee, and J.-Y. Chu, “Volumetric phase-measuring interferometer for three-dimensional coordinate metrology,” Precis. Eng. 27(2), 205–215 (2003).
[Crossref]

Other (3)

ESA, “XEUS: X-ray evolving-universe spectroscopy,” ESACDF Study Report CDF- 31(A), 1–237 (2004).

K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. 26, 351–391. (Elsevier, 1988).

ISO, “Guide to the expression of uncertainty in measurement (GUM 1995),” ISO/IEC Guide 98–3 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Measurement system for absolute ranging to multiple targets. C: circulator, CL: collimator, DOE: diffractive optical element, HWP: half-wave plate, PBS: polarizing beam splitter, fr: pulse repetition rate, Δfr: repetition rate difference between the signal and local lasers, L: lens, M: target mirror, PD: photo-detector, DM: dichroic mirror, and PPKTP: periodically poled KTP crystal.
Fig. 2
Fig. 2 BCC signal sampling and cross-correlation processing. (a) An exemplary BCC signal sampled from three targets. (b) Reference BCC signal pattern for cross-correlation. (c) Cross-correlation between the reference and the measurement BCC signal. (d) Enlarged views of cross-correlation curves for peak detection. Yellow lines indicate original sampled BCC signals and red curves are calculated cross-correlation data.
Fig. 3
Fig. 3 Absolute multi-target ranging performance. (a) Repeatability in Allan deviation at two distances. (b) Linearity test result compared with an incremental HeNe laser interferometer. (c) Speed of absolute ranging of multiple target objects. Three targets were modulated at 10, 20 and 30 Hz, respectively, using PZTs. During all the tests, the environment was controlled as specified in Table 1 in terms of temperature, pressure, humidity and CO2 concentration.
Fig. 4
Fig. 4 Distance and angle measurement for multi-DOF sensing of a rigid body motion. (a) Experimental configuration. (b) Measurement geometry. C: circulator, CL: collimator, DOE: diffractive optical element, PBS: polarizing beam splitter, and HWP: half wave plate.
Fig. 5
Fig. 5 Angle measurement test result. (a) Repeatability in terms of Allan deviation. (b) Distances (d1, d2, d3, and d4) to four targets under 1 Hz excitation. (c) Reconstructed angular motions. (d) Fourier transformed spectra of (c).

Tables (1)

Tables Icon

Table 1 Uncertainty evaluation of distance measurement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d=mΛ+ cΔt 2N
u c (d)= [ c Δt 2 u 2 (Δt)+ c f r 2 u 2 ( f r )+ c Δ f r 2 u 2 (Δ f r )+ c N 2 u c 2 (N)] 1/2

Metrics