Abstract

This paper aims to investigate changes in multi-wavelength Brillouin-Raman fiber laser (MBRFL) spectra characteristics that are influenced by variation of Raman pump power distribution along the two fiber-entry points. This is carried out by incorporating a Raman pump source with a set of couplers with various ratios. In this arrangement, the optimization of pumping ratio is properly carried out to achieve high number of lasing lines with 20 GHz spacing which yield the highest peak power discrepancy between odd- and even-order lasing lines and an excellent Stokes optical signal-to-noise ratio (S-OSNR). Employment of 50/50 coupler offers 212 flat amplitude channels with an average 27.5 dB S-OSNR and −10 dBm Stokes peak power when the Brillouin pump wavelength is set at 1543 nm. Achievements such flat and wide bandwidth MBRFL spectrum with 20 GHz spacing and excellent S-OSNR utilizing just a single pump source is significant in terms of simplicity and flexibility.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

G. Mamdoohi, A. R. Sarmani, M. H. Abu Bakar, and M. A. Mahdi, "Effects of Raman pump power distribution on output spectrum in a multi-wavelength BRFL: publisher’s note," Opt. Express 23, 29127-29127 (2015)
http://proxy.osapublishing.org/oe/abstract.cfm?uri=oe-23-22-29127

28 October 2015: Corrections were made to the author listing and the acknowledgments.

30 October 2015: A correction was made to the author affiliations.


OSA Recommended Articles
20 GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity

G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi
Opt. Express 21(16) 18724-18732 (2013)

Characteristics of multiwavelength L-band Brillouin–Raman fiber laser under forward and backward pumped environment

A. K. Abass, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, and T. F. Al-Mashhadani
Appl. Opt. 52(16) 3764-3769 (2013)

Multi-wavelength Brillouin-Raman fiber laser utilizing enhanced nonlinear amplifying loop mirror design

G. Mamdoohi, A. R. Sarmani, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi
Opt. Express 21(26) 31800-31808 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Veselka and S. K. Korotky, “A multi-wavelength source having precise channel spacing for WDM systems,” IEEE Photonics Technol. Lett. 10(7), 958–960 (1998).
    [Crossref]
  2. Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett. 30(11), 1282–1284 (2005).
    [Crossref] [PubMed]
  3. M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Opt. Express 17(8), 5944–5952 (2009).
    [Crossref] [PubMed]
  4. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13(1), 142–147 (2005).
    [Crossref] [PubMed]
  5. J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express 19(15), 14682–14689 (2011).
    [Crossref] [PubMed]
  6. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
    [Crossref]
  7. A. K. Zamzuri, M. I. Md Ali, A. Ahmad, R. Mohamad, and M. A. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett. 31(7), 918–920 (2006).
    [Crossref] [PubMed]
  8. N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
    [Crossref]
  9. G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “20 GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity,” Opt. Express 21(16), 18724–18732 (2013).
    [Crossref] [PubMed]
  10. G. Mamdoohi, A. R. Sarmani, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman fiber laser utilizing enhanced nonlinear amplifying loop mirror design,” Opt. Express 21(26), 31800–31808 (2013).
    [Crossref] [PubMed]
  11. Z. Tong, H. Wei, and S. Jian, “Theoretical investigation and optimization of bi-directionally pumped broadband fiber Raman amplifiers,” Opt. Commun. 217(1–6), 401–413 (2003).
    [Crossref]
  12. J. C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photonics Technol. Lett. 15(2), 212–214 (2003).
    [Crossref]
  13. A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19(15), 14152–14159 (2011).
    [Crossref] [PubMed]
  14. A. R. Sarmani, M. H. Abu Bakar, F. R. M. Adikan, and M. A. Mahdi, “Laser parameter variations in a Rayleigh scattering-based Raman fiber laser with single fiber bragg grating reflector,” IEEE Photon. J. 4(2), 461–466 (2012).
    [Crossref]
  15. C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).
  16. J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photonics Technol. Lett. 19(21), 1759–1761 (2007).
    [Crossref]

2013 (2)

2012 (1)

A. R. Sarmani, M. H. Abu Bakar, F. R. M. Adikan, and M. A. Mahdi, “Laser parameter variations in a Rayleigh scattering-based Raman fiber laser with single fiber bragg grating reflector,” IEEE Photon. J. 4(2), 461–466 (2012).
[Crossref]

2011 (3)

2009 (1)

2007 (1)

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photonics Technol. Lett. 19(21), 1759–1761 (2007).
[Crossref]

2006 (1)

2005 (2)

2003 (2)

Z. Tong, H. Wei, and S. Jian, “Theoretical investigation and optimization of bi-directionally pumped broadband fiber Raman amplifiers,” Opt. Commun. 217(1–6), 401–413 (2003).
[Crossref]

J. C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photonics Technol. Lett. 15(2), 212–214 (2003).
[Crossref]

2001 (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

1998 (1)

J. J. Veselka and S. K. Korotky, “A multi-wavelength source having precise channel spacing for WDM systems,” IEEE Photonics Technol. Lett. 10(7), 958–960 (1998).
[Crossref]

Abas, A. F.

Abu Bakar, M. H.

A. R. Sarmani, M. H. Abu Bakar, F. R. M. Adikan, and M. A. Mahdi, “Laser parameter variations in a Rayleigh scattering-based Raman fiber laser with single fiber bragg grating reflector,” IEEE Photon. J. 4(2), 461–466 (2012).
[Crossref]

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19(15), 14152–14159 (2011).
[Crossref] [PubMed]

Adikan, F. R.

Adikan, F. R. M.

A. R. Sarmani, M. H. Abu Bakar, F. R. M. Adikan, and M. A. Mahdi, “Laser parameter variations in a Rayleigh scattering-based Raman fiber laser with single fiber bragg grating reflector,” IEEE Photon. J. 4(2), 461–466 (2012).
[Crossref]

Ahmad, A.

Ajiya, M.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Opt. Express 17(8), 5944–5952 (2009).
[Crossref] [PubMed]

Al-Mansoori, M. H.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Opt. Express 17(8), 5944–5952 (2009).
[Crossref] [PubMed]

Bakar, A. A. A.

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19(15), 14152–14159 (2011).
[Crossref] [PubMed]

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

Bouteiller, J. C.

J. C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photonics Technol. Lett. 15(2), 212–214 (2003).
[Crossref]

Brar, K.

J. C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photonics Technol. Lett. 15(2), 212–214 (2003).
[Crossref]

Bromage, J.

J. C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photonics Technol. Lett. 15(2), 212–214 (2003).
[Crossref]

Chen, T.

Engelbrecht, R.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photonics Technol. Lett. 19(21), 1759–1761 (2007).
[Crossref]

Hagen, J.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photonics Technol. Lett. 19(21), 1759–1761 (2007).
[Crossref]

Hambali, N. A. M. A.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

Han, Y. G.

Headley, C.

J. C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photonics Technol. Lett. 15(2), 212–214 (2003).
[Crossref]

Hitam, S.

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Opt. Express 17(8), 5944–5952 (2009).
[Crossref] [PubMed]

Huang, T.

Jian, S.

Z. Tong, H. Wei, and S. Jian, “Theoretical investigation and optimization of bi-directionally pumped broadband fiber Raman amplifiers,” Opt. Commun. 217(1–6), 401–413 (2003).
[Crossref]

Kim, P.

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

Kim, S. H.

Korotky, S. K.

J. J. Veselka and S. K. Korotky, “A multi-wavelength source having precise channel spacing for WDM systems,” IEEE Photonics Technol. Lett. 10(7), 958–960 (1998).
[Crossref]

Lee, S. B.

Liu, X.

Lu, C.

Lu, F.

Mahdi, M. A.

G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “20 GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity,” Opt. Express 21(16), 18724–18732 (2013).
[Crossref] [PubMed]

G. Mamdoohi, A. R. Sarmani, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman fiber laser utilizing enhanced nonlinear amplifying loop mirror design,” Opt. Express 21(26), 31800–31808 (2013).
[Crossref] [PubMed]

A. R. Sarmani, M. H. Abu Bakar, F. R. M. Adikan, and M. A. Mahdi, “Laser parameter variations in a Rayleigh scattering-based Raman fiber laser with single fiber bragg grating reflector,” IEEE Photon. J. 4(2), 461–466 (2012).
[Crossref]

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19(15), 14152–14159 (2011).
[Crossref] [PubMed]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Opt. Express 17(8), 5944–5952 (2009).
[Crossref] [PubMed]

A. K. Zamzuri, M. I. Md Ali, A. Ahmad, R. Mohamad, and M. A. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett. 31(7), 918–920 (2006).
[Crossref] [PubMed]

Mamdoohi, G.

Md Ali, M. I.

Min, B.

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

Mohamad, R.

Mokhtar, M.

Ng, J.

Park, N.

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

Radic, S.

J. C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photonics Technol. Lett. 15(2), 212–214 (2003).
[Crossref]

Sarmani, A. R.

Schmauss, B.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photonics Technol. Lett. 19(21), 1759–1761 (2007).
[Crossref]

Siekiera, A.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photonics Technol. Lett. 19(21), 1759–1761 (2007).
[Crossref]

Sun, J.

Tang, J.

Tong, Z.

Z. Tong, H. Wei, and S. Jian, “Theoretical investigation and optimization of bi-directionally pumped broadband fiber Raman amplifiers,” Opt. Commun. 217(1–6), 401–413 (2003).
[Crossref]

Tran, T. V. A.

Veselka, J. J.

J. J. Veselka and S. K. Korotky, “A multi-wavelength source having precise channel spacing for WDM systems,” IEEE Photonics Technol. Lett. 10(7), 958–960 (1998).
[Crossref]

Wei, H.

Z. Tong, H. Wei, and S. Jian, “Theoretical investigation and optimization of bi-directionally pumped broadband fiber Raman amplifiers,” Opt. Commun. 217(1–6), 401–413 (2003).
[Crossref]

Welzel, O.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photonics Technol. Lett. 19(21), 1759–1761 (2007).
[Crossref]

Yaacob, M. H.

Yang, X.

Zamzuri, A. K.

Zhao, L.

Zhou, X.

Zhou, Y.

IEEE Photon. J. (1)

A. R. Sarmani, M. H. Abu Bakar, F. R. M. Adikan, and M. A. Mahdi, “Laser parameter variations in a Rayleigh scattering-based Raman fiber laser with single fiber bragg grating reflector,” IEEE Photon. J. 4(2), 461–466 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (4)

J. C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photonics Technol. Lett. 15(2), 212–214 (2003).
[Crossref]

J. J. Veselka and S. K. Korotky, “A multi-wavelength source having precise channel spacing for WDM systems,” IEEE Photonics Technol. Lett. 10(7), 958–960 (1998).
[Crossref]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photonics Technol. Lett. 19(21), 1759–1761 (2007).
[Crossref]

Laser Phys. (1)

N. A. M. A. Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys. 21(9), 1656–1660 (2011).
[Crossref]

Opt. Commun. (1)

Z. Tong, H. Wei, and S. Jian, “Theoretical investigation and optimization of bi-directionally pumped broadband fiber Raman amplifiers,” Opt. Commun. 217(1–6), 401–413 (2003).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Other (1)

C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of a MBRFL where the dashed boxes indicate the pumping arrangements. In the BiDP schemes, the couplers utilized in forward/backward directions are 5/95, 10/90, 20/80, 30/70, 50/50, 70/30, 80/20, 90/10, and 95/5. In addition, no couplers are included for 100% FWP and BWP as shown in the insets.
Fig. 2
Fig. 2 ASE spectra at different coupling ratios when the RPP is set at 1000 mW and the BP signal is switched off. The C R labels are arranged from top to bottom level in descending-order of output power values.
Fig. 3
Fig. 3 (a) Spectra output of MBRFLs, (b) the magnified views of spectral features at different RPP couplings namely, 100% BWP, 20/80, 50/50, 90/10, and 100% FWP and (c) illustration of 10 and 20 GHz spacing MBRFL spectra for BWP and 90/10 coupler as an example. For simplification, other C R s results are not shown (RPP and BP power are fixed at 1000 mW and 5 dBm, respectively, while the BP wavelength is set at 1555 nm).
Fig. 4
Fig. 4 Peak power difference between odd- and even-order BSL as a fraction of RPP toward FWP ( r f ) (RPP = 1000 mW, BP wavelength = 1555 nm, BP power = 5 dBm).
Fig. 5
Fig. 5 Evolutions of S-OSNR against RPP increment, the C R labels are arranged from top to bottom levels in descending-order of S-OSNR values (BP wavelength = 1555 nm, BP power = 5 dBm).
Fig. 6
Fig. 6 (a) Number of output channels versus RPP increment at different C R s , (b) threshold power as a function of r f (RPP = 1 W, BP power = 5 dBm, BP wavelength = 1555 nm).
Fig. 7
Fig. 7 (a) Evolutions of S-OSNR and SLC as a function of BP wavelength, (b) variation of Stokes peak power against the BP wavelength increment at different pumping ratios. RPP and BP power are fixed at their optimized values which are known as 1 W and −2.6 dBm respectively.
Fig. 8
Fig. 8 Spectrum of MBRFL together with its enlarged view when the C R is set at 50/50 (RPP = 1000 mW, BP power = −2.6 dBm, BP wavelength = 1543 nm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R G ( z ) = g R P 0 { r f exp ( α p z ) + ( 1 r f ) exp ( α p ( L z ) ) } ,
R G ( z ) = g R P 0 exp ( α p ( L z ) ) .
R G ( z ) = g R P 0 exp ( α p z ) .
d P f d z = α p P f , d P b d z = α p P b .

Metrics