Abstract

In the frame of sum frequency generation of a broadband infrared source, we aim to enlarge the converted bandwidth by using a pump frequency comb while keeping a high conversion efficiency. The nonlinear effects are simultaneously induced in the same nonlinear medium. In this paper, we investigate the spectral filtering effect on the temporal coherence behavior with a Mach-Zehnder interferometer using two pump lines. We show that joined effects of quasi-phase matching and spectral sampling lead to an original coherence behavior.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a frequency spectral compression effect through an up-conversion interferometer

Jean-Thomas Gomes, Ludovic Grossard, Damien Ceus, Sébastien Vergnole, Laurent Delage, François Reynaud, Harald Herrmann, and Wolfgang Sohler
Opt. Express 21(3) 3073-3082 (2013)

Control of the coherence behavior in a SFG interferometer through the multipump phases command

P. Darré, L. Lehmann, L. Grossard, L. Delage, and F. Reynaud
Opt. Express 26(6) 7098-7106 (2018)

Single photon MIR upconversion detector at room temperature with a PPLN ridge waveguide

Lucien Lehmann, Ludovic Grossard, Laurent Delage, Francois Reynaud, Mathieu Chauvet, and Florent Bassignot
Opt. Express 27(14) 19233-19241 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Boyd, “Infrared upconversion for astronomy,” Opt. Eng. 16, 563–568 (1977).
    [Crossref]
  2. D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).
  3. L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its application,” Phys. Rep. 521, 69–94 (2012).
    [Crossref]
  4. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribtion systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. B 72, 052311 (2005).
    [Crossref]
  5. F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).
  6. A. Restelli, J.C. Bienfang, and A.L. Migdall, “Single-photon detection efficiency up to 50 % at 1310 nm with an InGaAs/InP avalanche photodiode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
    [Crossref]
  7. C. Langrock, E. Diamanti, R.V. Roussev, Y. Yamamoto, and M.M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [Crossref] [PubMed]
  8. R.W. Boyd, Nonlinear Optics (Academic, 2008).
  9. M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched second harmonic generation : tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [Crossref]
  10. R.T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
    [Crossref]
  11. L. Ma, J.C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express 19, 5470 (2011).
    [Crossref] [PubMed]
  12. J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
    [Crossref]
  13. J.-T. Gomes, L. Grossard, D. Ceus, S. Vergnole, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Demonstration of a frequency spectral compression effect through an up-conversion interferometer,” Opt. Express 21, 3073–3082 (2013).
    [Crossref] [PubMed]
  14. S. Wabnitz, A. Picozzi, A. Tonello, D. Modotto, and G. Millot, “Control of signal coherence in parametric frequency mixing with incoherent pumps: narrowband mid-infrared light generation by downconversion of broadband amplified spontaneous emission source at 1550 nm,” J. Opt. Soc. Am. B 29, 3128–3135 (2012).
    [Crossref]

2013 (3)

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

A. Restelli, J.C. Bienfang, and A.L. Migdall, “Single-photon detection efficiency up to 50 % at 1310 nm with an InGaAs/InP avalanche photodiode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

J.-T. Gomes, L. Grossard, D. Ceus, S. Vergnole, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Demonstration of a frequency spectral compression effect through an up-conversion interferometer,” Opt. Express 21, 3073–3082 (2013).
[Crossref] [PubMed]

2012 (3)

S. Wabnitz, A. Picozzi, A. Tonello, D. Modotto, and G. Millot, “Control of signal coherence in parametric frequency mixing with incoherent pumps: narrowband mid-infrared light generation by downconversion of broadband amplified spontaneous emission source at 1550 nm,” J. Opt. Soc. Am. B 29, 3128–3135 (2012).
[Crossref]

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its application,” Phys. Rep. 521, 69–94 (2012).
[Crossref]

2011 (1)

2010 (1)

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

2008 (1)

R.T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
[Crossref]

2005 (2)

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribtion systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. B 72, 052311 (2005).
[Crossref]

C. Langrock, E. Diamanti, R.V. Roussev, Y. Yamamoto, and M.M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

1992 (1)

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched second harmonic generation : tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

1977 (1)

R. Boyd, “Infrared upconversion for astronomy,” Opt. Eng. 16, 563–568 (1977).
[Crossref]

Baek, B.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Baudoin, R.

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

Bienfang, J.C.

A. Restelli, J.C. Bienfang, and A.L. Migdall, “Single-photon detection efficiency up to 50 % at 1310 nm with an InGaAs/InP avalanche photodiode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

L. Ma, J.C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express 19, 5470 (2011).
[Crossref] [PubMed]

Bouyeron, L.

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

Boyd, R.

R. Boyd, “Infrared upconversion for astronomy,” Opt. Eng. 16, 563–568 (1977).
[Crossref]

Boyd, R.W.

R.W. Boyd, Nonlinear Optics (Academic, 2008).

Brustlein, S.

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Byer, R.L.

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched second harmonic generation : tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Ceus, D.

J.-T. Gomes, L. Grossard, D. Ceus, S. Vergnole, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Demonstration of a frequency spectral compression effect through an up-conversion interferometer,” Opt. Express 21, 3073–3082 (2013).
[Crossref] [PubMed]

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Del Rio, L.

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Delage, L.

J.-T. Gomes, L. Grossard, D. Ceus, S. Vergnole, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Demonstration of a frequency spectral compression effect through an up-conversion interferometer,” Opt. Express 21, 3073–3082 (2013).
[Crossref] [PubMed]

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Desfarges-Berthelemot, A.

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Diamanti, E.

C. Langrock, E. Diamanti, R.V. Roussev, Y. Yamamoto, and M.M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribtion systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. B 72, 052311 (2005).
[Crossref]

Fejer, M.M.

Gerrits, T.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Gisin, N.

R.T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
[Crossref]

Gomes, J.-T.

J.-T. Gomes, L. Grossard, D. Ceus, S. Vergnole, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Demonstration of a frequency spectral compression effect through an up-conversion interferometer,” Opt. Express 21, 3073–3082 (2013).
[Crossref] [PubMed]

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

Grossard, L.

J.-T. Gomes, L. Grossard, D. Ceus, S. Vergnole, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Demonstration of a frequency spectral compression effect through an up-conversion interferometer,” Opt. Express 21, 3073–3082 (2013).
[Crossref] [PubMed]

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Guillot, J.

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Harrington, S.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Herrmann, H.

J.-T. Gomes, L. Grossard, D. Ceus, S. Vergnole, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Demonstration of a frequency spectral compression effect through an up-conversion interferometer,” Opt. Express 21, 3073–3082 (2013).
[Crossref] [PubMed]

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

Honjo, T.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribtion systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. B 72, 052311 (2005).
[Crossref]

Inoue, K.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribtion systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. B 72, 052311 (2005).
[Crossref]

Jundt, D.H.

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched second harmonic generation : tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Kermene, V.

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Lai, O.

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

Langrock, C.

Lita, A.E.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Ma, L.

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its application,” Phys. Rep. 521, 69–94 (2012).
[Crossref]

L. Ma, J.C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express 19, 5470 (2011).
[Crossref] [PubMed]

Magel, G.A.

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched second harmonic generation : tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Marsili, F.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Migdall, A.L.

A. Restelli, J.C. Bienfang, and A.L. Migdall, “Single-photon detection efficiency up to 50 % at 1310 nm with an InGaAs/InP avalanche photodiode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

Millot, G.

Mirin, R.P.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Modotto, D.

Nam, S.W.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Picozzi, A.

Restelli, A.

A. Restelli, J.C. Bienfang, and A.L. Migdall, “Single-photon detection efficiency up to 50 % at 1310 nm with an InGaAs/InP avalanche photodiode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

Reynaud, F.

J.-T. Gomes, L. Grossard, D. Ceus, S. Vergnole, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Demonstration of a frequency spectral compression effect through an up-conversion interferometer,” Opt. Express 21, 3073–3082 (2013).
[Crossref] [PubMed]

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Roussev, R.V.

Shaw, M.D.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Slattery, O.

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its application,” Phys. Rep. 521, 69–94 (2012).
[Crossref]

L. Ma, J.C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express 19, 5470 (2011).
[Crossref] [PubMed]

Sohler, W.

J.-T. Gomes, L. Grossard, D. Ceus, S. Vergnole, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Demonstration of a frequency spectral compression effect through an up-conversion interferometer,” Opt. Express 21, 3073–3082 (2013).
[Crossref] [PubMed]

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

Stern, J.A.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Takesue, H.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribtion systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. B 72, 052311 (2005).
[Crossref]

Tang, X.

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its application,” Phys. Rep. 521, 69–94 (2012).
[Crossref]

L. Ma, J.C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express 19, 5470 (2011).
[Crossref] [PubMed]

Thew, R.T.

R.T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
[Crossref]

Tonello, A.

S. Wabnitz, A. Picozzi, A. Tonello, D. Modotto, and G. Millot, “Control of signal coherence in parametric frequency mixing with incoherent pumps: narrowband mid-infrared light generation by downconversion of broadband amplified spontaneous emission source at 1550 nm,” J. Opt. Soc. Am. B 29, 3128–3135 (2012).
[Crossref]

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Vayshenker, I.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Vergnole, S.

Verma, V.B.

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Wabnitz, S.

Woillez, J.

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

Yamamoto, Y.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribtion systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. B 72, 052311 (2005).
[Crossref]

C. Langrock, E. Diamanti, R.V. Roussev, Y. Yamamoto, and M.M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[Crossref] [PubMed]

Zbinden, H.

R.T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
[Crossref]

Appl. Phys. Lett. (2)

A. Restelli, J.C. Bienfang, and A.L. Migdall, “Single-photon detection efficiency up to 50 % at 1310 nm with an InGaAs/InP avalanche photodiode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

R.T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched second harmonic generation : tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

MNRAS (1)

D. Ceus, F. Reynaud, J. Woillez, O. Lai, L. Delage, L. Grossard, R. Baudoin, J.-T. Gomes, L. Bouyeron, H. Herrmann, and W. Sohler, “Application of frequency conversion of starlight to high-resolution imaging interferometry. On-sky sensitivity test of a single arm of the interferometer,” MNRAS 427, 95–98 (2012).

Nature (1)

F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, and S.W. Nam, “Detecting single infrared photons with 93 % system efficiency,” Nature 7, 210–214 (2013).

Opt. Commun. (1)

J. Guillot, D. Ceus, S. Brustlein, L. Del Rio, A. Desfarges-Berthelemot, V. Kermene, L. Grossard, A. Tonello, L. Delage, and F. Reynaud, “Widely tunable sum-frequency generation in PPLN waveguide pumped by a multi-wavelength Yb-doped fiber laser,” Opt. Commun. 283, 442–446 (2010).
[Crossref]

Opt. Eng. (1)

R. Boyd, “Infrared upconversion for astronomy,” Opt. Eng. 16, 563–568 (1977).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rep. (1)

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its application,” Phys. Rep. 521, 69–94 (2012).
[Crossref]

Phys. Rev. B (1)

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-keydistribtion systems using 1.55-μm up-conversion single-photon detectors,” Phys. Rev. B 72, 052311 (2005).
[Crossref]

Other (1)

R.W. Boyd, Nonlinear Optics (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Simulated color-map of the normalized sum frequency generation efficiency for different pump/signal couples. The red zone defines the maximum conversion efficiency. The phase-matching curve is retrieved by an orthogonal projection. The converted sample is represented below and corresponds to a frequency transposition of the infrared sample in visible domain.
Fig. 2
Fig. 2 Schematic representation of the spectral sampling of a large bandwidth source with a frequency comb of two laser lines (schema not to scale). For a given pump laser line, the color-map defines the spectral components νs converted by SFG on the broadband spectrum.
Fig. 3
Fig. 3 Schematic layout of the Mach-Zehnder interferometer with the delay line before and after the sum frequency generation process. The delay can be applied either on infrared or on visible stage.
Fig. 4
Fig. 4 Schematic layout with detection part for a single pump line. The Fourier Transform of the infrared or converted power spectral density (PSD) is analyzed by applying an OPD before or after the SFG process.
Fig. 5
Fig. 5 Theoretical visibility obtained with a single-line pump.
Fig. 6
Fig. 6 Schematic layout of our experiment presented as an infrared correlator. The useful part of the infrared signal selected for the upconversion process is represented on each arm of the interferometer. As a delay is only applied on the infrared stage, the setup achieves the correlation between two infrared signals.
Fig. 7
Fig. 7 Schematic layout of a visible correlator. A delay is applied on the visible stage which is the same as correlating two visible signals.
Fig. 8
Fig. 8 Schematic layout of the experimental setup with a dual-line pump. Two upconversion processes are realized on each arm of the interferometer.
Fig. 9
Fig. 9 Superposition of experimental fringe contrast obtained with one pump line and by applying an OPD before and after the SFG and comparison with the theoretical fit (black curve).
Fig. 10
Fig. 10 Measured contrast for different frequency gap between the two pump frequencies (from top to bottom : 132.5 GHz, 212 GHz, 265.1 GHz, 318.1 GHz and 397.8 GHz). (a) Experimental fringe contrast versus the OPD applied on the infrared stage. (b) Experimental fringe contrast versus the OPD applied on the visible stage. In both cases the black curve represents the best theoretical fit of the experimental points.

Tables (1)

Tables Icon

Table 1 Experimental spectral compression factor and relative error with the theoretical compression factor.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ k = 2 π c ( n s ν s + n p ν p n c ν c c Λ ) ,
η ( ν s , ν p ) = sinc 2 ( Δ k L 2 ) ,
ν p = a + b ν s .
ν c = a + ( 1 + b ) ν s .
Δ ν c = ( 1 + b ) Δ ν s ,
ρ = Δ ν s Δ ν c = | 1 1 + b | .
d I ( ν ) ( B ( ν ) { 1 + exp [ i 2 π ( δ s ν s c + δ c ν c c ) ] } d ν ) ,
I ( ν ) = k ( B ( ν ) { 1 + exp [ i 2 π ( δ s ν s c + δ c ν c c ) ] } d ν ) ,
C ( δ ) = | Triangle ( δ Δ ν acc π c ) | .
B ( ν ) sinc 2 ( π ( ν ν s 1 ) Δ ν acc ) + sinc 2 ( π ( ν ν s 2 ) Δ ν acc ) .
C ( δ s ) = | Triangle ( δ s Δ ν acc π c ) cos ( π δ s c Δ ν s ) | .
C ( δ c ) = | Triangle ( δ c Δ ν acc π c ) cos ( π δ c c Δ ν c ) | ,
ρ = L B VIS L B IR .

Metrics