Abstract

This paper presents a novel optical single-sideband (SSB) OFDM modulation scheme using a two-segment electro-absorption modulator (EAM). Differences in the chirp characteristics of two segments of the EAM make it possible to design driving signals capable of suppressing one of the optical sidebands, such that the optical OFDM signal does not suffer from frequency-selective power fading following dispersive fiber transmission. Our experiment results demonstrate optical OFDM transmissions at 13.5-Gbps over a 0 ∼ 200-km IM/DD system without the need for dispersion compensation and distance-dependent bit- and power-loading.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation

Hsing-Yu Chen, Chia-Chien Wei, I-Cheng Lu, Yu-Chao Chen, Hsuan-Hao Chu, and Jyehong Chen
Opt. Express 22(12) 14637-14645 (2014)

SSII cancellation in an EAM-based OFDM-IMDD transmission system employing a novel dynamic chirp model

Dar-Zu Hsu, Chia-Chien Wei, Hsing-Yu Chen, Yi-Cheng Lu, Cih-Yuan Song, Chih-Chieh Yang, and Jyehong Chen
Opt. Express 21(1) 533-543 (2013)

High-Capacity and High-Loss-Budget OFDM Long-Reach PON Without an Optical Amplifier [Invited]

Hsing-Yu Chen, Chia-Chien Wei, I-Cheng Lu, Hsuan-Hao Chu, Yu-Chao Chen, and Jyehong Chen
J. Opt. Commun. Netw. 7(1) A59-A65 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Madamopoulos, D. C. Friedman, I. Tomkos, and A. Boskovic, “Study of the performance of a transparent and reconfigurable metropolitan area network,” J. Lightwave Technol. 20, 937–945 (2002).
    [Crossref]
  2. K.-I Sato and H. Hasegawa, “Optical networking technologies that will create future bandwidth-abundant networks,” J. Opt. Commun. Netw. 1, A81–A93 (2009).
    [Crossref]
  3. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19, 17546–17556 (2011).
    [Crossref] [PubMed]
  4. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30, 384–398 (2012).
    [Crossref]
  5. T. M. F. Alves, A. A. P. Alberto, and A. V. T. Cartaxo, “Direct-detection multi-band OFDM metro-networks employing virtual carriers and low receiver bandwidth,” in Optical Fiber Communication Conference2014, paper Tu3G.5.
    [Crossref]
  6. C.-C. Wei, “Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection,” Opt. Lett. 36, 151–153 (2011).
    [Crossref] [PubMed]
  7. C.-C. Wei, “Analysis and iterative equalization of transient and adiabatic chirp effects in DML-based OFDM transmission systems,” Opt. Express 20, 25774–25789 (2012).
    [Crossref] [PubMed]
  8. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “74.4% SSII cancellation in an EAM-based OFDM-IMDD transmission system,” in Optical Fiber Communication Conference2013, paper OM2C.7.
  9. J. L. Wei, C. Snchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18, 20732–20745 (2010).
    [Crossref] [PubMed]
  10. M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
    [Crossref]
  11. H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20, 243–245 (2008).
    [Crossref]
  12. K.-C. Chang, S.-W. Shen, M.-C. Hsu, Y.-J. Chiu, C.-C. Wei, and C.-K. Lee, “Negative-chirped EAM-SOA for distance-insensitive optical OFDM transmission in long-reach OFDMA PONs,” in Optical Fiber Communication Conference2014, paper Tu3H.4.
    [Crossref]
  13. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
    [Crossref]

2013 (1)

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

2012 (2)

2011 (2)

2010 (1)

2009 (1)

2008 (1)

H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20, 243–245 (2008).
[Crossref]

2002 (1)

1993 (1)

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
[Crossref]

Alberto, A. A. P.

T. M. F. Alves, A. A. P. Alberto, and A. V. T. Cartaxo, “Direct-detection multi-band OFDM metro-networks employing virtual carriers and low receiver bandwidth,” in Optical Fiber Communication Conference2014, paper Tu3G.5.
[Crossref]

Alves, T. M. F.

T. M. F. Alves, A. A. P. Alberto, and A. V. T. Cartaxo, “Direct-detection multi-band OFDM metro-networks employing virtual carriers and low receiver bandwidth,” in Optical Fiber Communication Conference2014, paper Tu3G.5.
[Crossref]

Anfray, T.

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

Aubin, G.

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

Aupetit-Berthelemot, C.

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

Boskovic, A.

Cartaxo, A. V. T.

T. M. F. Alves, A. A. P. Alberto, and A. V. T. Cartaxo, “Direct-detection multi-band OFDM metro-networks employing virtual carriers and low receiver bandwidth,” in Optical Fiber Communication Conference2014, paper Tu3G.5.
[Crossref]

Chaibi, M. E.

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

Chanclou, P.

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

Chang, K.-C.

K.-C. Chang, S.-W. Shen, M.-C. Hsu, Y.-J. Chiu, C.-C. Wei, and C.-K. Lee, “Negative-chirped EAM-SOA for distance-insensitive optical OFDM transmission in long-reach OFDMA PONs,” in Optical Fiber Communication Conference2014, paper Tu3H.4.
[Crossref]

Chen, H.-Y.

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19, 17546–17556 (2011).
[Crossref] [PubMed]

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “74.4% SSII cancellation in an EAM-based OFDM-IMDD transmission system,” in Optical Fiber Communication Conference2013, paper OM2C.7.

Chen, J.

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19, 17546–17556 (2011).
[Crossref] [PubMed]

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “74.4% SSII cancellation in an EAM-based OFDM-IMDD transmission system,” in Optical Fiber Communication Conference2013, paper OM2C.7.

Chiu, Y.-J.

K.-C. Chang, S.-W. Shen, M.-C. Hsu, Y.-J. Chiu, C.-C. Wei, and C.-K. Lee, “Negative-chirped EAM-SOA for distance-insensitive optical OFDM transmission in long-reach OFDMA PONs,” in Optical Fiber Communication Conference2014, paper Tu3H.4.
[Crossref]

Cvijetic, N.

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
[Crossref]

Erasme, D.

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

Friedman, D. C.

Giddings, R. P.

Gosset, C.

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

Hasegawa, H.

Hsu, D.-Z.

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19, 17546–17556 (2011).
[Crossref] [PubMed]

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “74.4% SSII cancellation in an EAM-based OFDM-IMDD transmission system,” in Optical Fiber Communication Conference2013, paper OM2C.7.

Hsu, M.-C.

K.-C. Chang, S.-W. Shen, M.-C. Hsu, Y.-J. Chiu, C.-C. Wei, and C.-K. Lee, “Negative-chirped EAM-SOA for distance-insensitive optical OFDM transmission in long-reach OFDMA PONs,” in Optical Fiber Communication Conference2014, paper Tu3H.4.
[Crossref]

Hugues-Salas, E.

Kazmierski, C.

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

Kechaou, K.

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
[Crossref]

Kim, H.

H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20, 243–245 (2008).
[Crossref]

Lee, C.-K.

K.-C. Chang, S.-W. Shen, M.-C. Hsu, Y.-J. Chiu, C.-C. Wei, and C.-K. Lee, “Negative-chirped EAM-SOA for distance-insensitive optical OFDM transmission in long-reach OFDMA PONs,” in Optical Fiber Communication Conference2014, paper Tu3H.4.
[Crossref]

Li, W.-Y.

Lu, I.-C.

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “74.4% SSII cancellation in an EAM-based OFDM-IMDD transmission system,” in Optical Fiber Communication Conference2013, paper OM2C.7.

Madamopoulos, N.

Neto, L. A.

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

Sato, K.-I

Shen, S.-W.

K.-C. Chang, S.-W. Shen, M.-C. Hsu, Y.-J. Chiu, C.-C. Wei, and C.-K. Lee, “Negative-chirped EAM-SOA for distance-insensitive optical OFDM transmission in long-reach OFDMA PONs,” in Optical Fiber Communication Conference2014, paper Tu3H.4.
[Crossref]

Snchez, C.

Song, C.-Y.

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “74.4% SSII cancellation in an EAM-based OFDM-IMDD transmission system,” in Optical Fiber Communication Conference2013, paper OM2C.7.

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940 (1993).
[Crossref]

Tang, J. M.

Tomkos, I.

Wei, C.-C.

C.-C. Wei, “Analysis and iterative equalization of transient and adiabatic chirp effects in DML-based OFDM transmission systems,” Opt. Express 20, 25774–25789 (2012).
[Crossref] [PubMed]

C.-C. Wei, “Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection,” Opt. Lett. 36, 151–153 (2011).
[Crossref] [PubMed]

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19, 17546–17556 (2011).
[Crossref] [PubMed]

K.-C. Chang, S.-W. Shen, M.-C. Hsu, Y.-J. Chiu, C.-C. Wei, and C.-K. Lee, “Negative-chirped EAM-SOA for distance-insensitive optical OFDM transmission in long-reach OFDMA PONs,” in Optical Fiber Communication Conference2014, paper Tu3H.4.
[Crossref]

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “74.4% SSII cancellation in an EAM-based OFDM-IMDD transmission system,” in Optical Fiber Communication Conference2013, paper OM2C.7.

Wei, J. L.

IEEE Photon. Technol. Lett. (2)

M. E. Chaibi, T. Anfray, K. Kechaou, C. Gosset, L. A. Neto, G. Aubin, C. Kazmierski, P. Chanclou, C. Aupetit-Berthelemot, and D. Erasme, “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML,” IEEE Photon. Technol. Lett. 25, 2271–2273 (2013).
[Crossref]

H. Kim, “EML-based optical single sideband transmitter,” IEEE Photon. Technol. Lett. 20, 243–245 (2008).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Express (3)

Opt. Lett. (1)

Other (3)

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “74.4% SSII cancellation in an EAM-based OFDM-IMDD transmission system,” in Optical Fiber Communication Conference2013, paper OM2C.7.

T. M. F. Alves, A. A. P. Alberto, and A. V. T. Cartaxo, “Direct-detection multi-band OFDM metro-networks employing virtual carriers and low receiver bandwidth,” in Optical Fiber Communication Conference2014, paper Tu3G.5.
[Crossref]

K.-C. Chang, S.-W. Shen, M.-C. Hsu, Y.-J. Chiu, C.-C. Wei, and C.-K. Lee, “Negative-chirped EAM-SOA for distance-insensitive optical OFDM transmission in long-reach OFDMA PONs,” in Optical Fiber Communication Conference2014, paper Tu3H.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic plot of the proposed SSB modulation scheme based on a two-segment EAM.
Fig. 2
Fig. 2 (a) The top view of the two-segment EAM. The measured transmission and chirp parameters of (b) segment 1 and (c) segment 2.
Fig. 3
Fig. 3 The setup of the experiment (inset: optical spectra of the SSB and DSB signals.)
Fig. 4
Fig. 4 The subcarrier powers related to those at optical BtB using (a) SSB and (b) DSB modulation.
Fig. 5
Fig. 5 The SNR of (a) SSB and (b) DSB QPSK-OFDM signals, and the relative SNR normalized by the respective SNR at optical BtB of (c) SSB and (d) DSB signals.
Fig. 6
Fig. 6 (a) The bit number of each subcarrier of the bit-loaded signals. The measured SNR of (b) SSB and (c) DSB bit-loaded signals, and the improvement in SNR provided by SSII cancellation of (d) SSB and (e) DSB bit-loaded signals.
Fig. 7
Fig. 7 BER and selected constellations of the bit-loaded OFDM signals.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E i 1 + 1 j α i 2 X i S i ( 1 ) + 1 α i 2 8 X i 2 S i ( 2 ) ,
E ssb ( 1 + S 1 ( 1 ) + S 1 ( 2 ) ) × ( 1 + S 2 ( 1 ) + S 2 ( 2 ) ) 1 + S 1 ( 1 ) + S 2 ( 1 ) 1 st-order signal + S 1 ( 2 ) + S 2 ( 2 ) + S 1 ( 1 ) S 2 ( 1 ) 2 nd-order term .
[ s ( n ) s * ( n ) ] = [ s ( n ) 0 ] = 1 2 [ 1 j α 1 1 j α 2 1 + j α 1 1 + j α 2 ] [ x 1 ( n ) x 2 ( n ) ] , for n > 0 .
x 2 ( n ) x 1 ( n ) = 1 + j α 2 1 + j α 1 H ( n ) , for n > 0 ,
| Θ { E ssb } | 2 1 + 2 { Θ { S 1 ( 1 ) + S 2 ( 1 ) } } 1 st-order signal + | Θ { S 1 ( 1 ) + S 2 ( 1 ) } | 2 + 2 { Θ { S 1 ( 2 ) + S 2 ( 2 ) + S 1 ( 1 ) S 2 ( 1 ) } } 2 nd-order SSII

Metrics