Abstract

A liquid crystal lens array with a hexagonal arrangement is investigated experimentally. The uniqueness of this study exists in the fact that using convex-ring electrode provides a smooth and controllable applied potential profile across the aperture to manage the phase profile. We observed considerable differences between flat electrode and convex-ring electrode; in particular the lens focal length is variable in a wider range from 2.5cm to infinity. This study presents several noteworthy characteristics such as low driving voltage; 30 μm cell gap and the lens is electrically switchable between 2D/3D modes. We demonstrate a hexagonal LC-lens array for capturing 3D images by using single sensor using integral imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system

Amir Hassanfiroozi, Yi-Pai Huang, Bahram Javidi, and Han-Ping D. Shieh
Opt. Express 24(8) 8527-8538 (2016)

High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display

Yu-Cheng Chang, Tai-Hsiang Jen, Chih-Hung Ting, and Yi-Pai Huang
Opt. Express 22(3) 2714-2724 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  2. H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
    [Crossref] [PubMed]
  3. Y.-P. Huang, H.-P. D. Shieh, and S.-T. Wu, “Applications of multidirectional asymmetrical microlens-array light-control films on reflective liquid-crystal displays for image quality enhancement,” Appl. Opt. 43(18), 3656–3663 (2004).
    [Crossref] [PubMed]
  4. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
    [Crossref] [PubMed]
  5. Z. He, T. Nose, and S. Sato, “Optical Performance of Liquid Crystal Cells with Asymmetric Slit-Patterned Electrodes in Various Applied Field Configurations,” Jpn. J. Appl. Phys. 33(1), 1091–1095 (1994).
    [Crossref]
  6. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [Crossref] [PubMed]
  7. H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
    [Crossref] [PubMed]
  8. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
    [Crossref] [PubMed]
  9. R. Zhu, S. Xu, Q. Hong, S.-T. Wu, C. Lee, C.-M. Yang, C.-C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
    [Crossref] [PubMed]
  10. A. Hassanfiroozi, T.-H. Jen, Y.-P. Huang, and H.-P. D. Shieh, “Liquid crystal lens array for a 3D endoscope,” Biomedical Optics & Medical Imaging, SPIE Newsroom (2014).
  11. M. Singer, J. Endres, A. Yetasook, W. Halabi, I. Voskresensky, M. J. Stamos, and R. Clements, “Evaluation of 3-D laparoscopy to complete surgical skills tasks,” Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons 27(S304–S503), 520 ( 2013).
  12. Y.-P. Huang, C.-W. Chen, M. Cho, and B. Javidi, “Liquid crystal lens for axially distributed three-dimensional sensing,” Proc. SPIE 8738, 873804 (2013).
    [Crossref]
  13. Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
    [Crossref] [PubMed]
  14. Y. Yi-Pai Huang, C.-W. Chen, and Y.-C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technol. 8(11), 650–655 (2012).
  15. Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2D/3D switchable autostereoscopic display with multi-electrically driven liquid crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
    [Crossref]
  16. M. Kawamura, E. Yumoto, and S. Ishikuro, “Three-dimensional imaging system by using a liquid crystal lens,” Proc. Int’l Symp. Optomechatron. Technol.2, 1–6, (2012).
    [Crossref]
  17. L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21(7), 8371–8381 (2013).
    [Crossref] [PubMed]
  18. H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [Crossref] [PubMed]
  19. C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
    [Crossref] [PubMed]
  20. P. C.-P. Chao, Y.-Y. Kao, and C.-J. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photon. J. 4(1), 250–266 (2012).
    [Crossref]
  21. C.-T. Hsieh, Y.-F. Hsu, C.-W. Chung, M.-F. Chen, W.-C. Su, and C.-Y. Huang, “Distortion aberration correction device fabricated with liquid crystal lens array,” Opt. Express 21(2), 1937–1943 (2013).
    [Crossref] [PubMed]
  22. G. Shibuya, N. Okuzawa, and M. Hayashi, “New application of liquid crystal lens of active polarized filter for micro camera,” Opt. Express 20(25), 27520–27529 (2012).
    [Crossref] [PubMed]
  23. H. Milton, P. Brimicombe, P. Morgan, H. Gleeson, and J. Clamp, “Optimization of refractive liquid crystal lenses using an efficient multigrid simulation,” Opt. Express 20(10), 11159–11165 (2012).
    [Crossref] [PubMed]
  24. Y. C. Chen, L. Y. Liao, Y. P. Huang, and H. P. Shieh, “Extremely-fast focusing gradient driven liquid crystal lens driven by ultra-low operating voltages,” International Display Manufacturing Conference, PS-028, (2011).
  25. C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for fast switching liquid crystal lens on 2D/3D switchable auto-stereoscopic display,” IEEE J. Displ. Technol. 8(10), 559–561 (2012).
    [Crossref]
  26. K. C. Heo, S. H. Yu, J. H. Kwon, and J. S. Gwag, “Thermally tunable-focus lenticular lens using liquid crystal,” Appl. Opt. 52(35), 8460–8464 (2013).
    [Crossref] [PubMed]
  27. M. Xu, H. Ren, C. Nah, S. H. Lee, and Y. Liu, “Liquid crystal microlenticular array assembled by a fringing field,” J. Appl. Phys. 111(6), 063104 (2012).
    [Crossref]
  28. D. Liang and Q.-H. Wang, “Thermally tunable-focus lenticular lens using liquid crystal,” J. Display Technol. 9(10), 814–818 (2013).
  29. S. Xu, H. Ren, and S.-T. Wu, “Adaptive liquid lens actuated by liquid crystal pistons,” Opt. Express 20(27), 28518–28523 (2012).
    [Crossref] [PubMed]
  30. H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
    [Crossref] [PubMed]
  31. S.-J. Hwang, Y.-X. Liu, and G. A. Porter, “Improvement of performance of liquid crystal microlens with polymer surface modification,” Opt. Express 22(4), 4620–4627 (2014).
    [Crossref] [PubMed]
  32. H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Transactions on Electrical and Electronic Materials 12(6), 234–240 (2011).
    [Crossref]
  33. K. W. Ian, M. Exarchos, and M. Missous, “A novel low temperature soft reflow process for the fabrication of deep-submicron (<0.35 μm) T-gate pseudomorphic high electron mobility transistor structures,” Nanotechnology 24(5), 055202 (2013).
    [Crossref] [PubMed]
  34. F. M. Pargon, “Atomic force microscopy study of photoresist sidewall smoothing and line edge roughness transfer during gate patterning,” J. Micro/Nanolith. MEMS MOEMS. 12(4), 041308 (2013).
  35. C. M. Waits, B. Morgan, M. J. Kastantin, and R. Ghodssi, “Microfabrication of 3D Silicon MEMS Structures using Gray-scale Lithography and Deep Reactive Ion Etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
    [Crossref]
  36. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, Second Edition (John Wiley and Sons, Ltd 2014), Chap.12.
  37. I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).
  38. R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
    [Crossref] [PubMed]
  39. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
  40. F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
    [Crossref]
  41. M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34(7), 1105–1107 (2009).
    [Crossref] [PubMed]
  42. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065 (1998).
    [Crossref]
  43. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in Three-Dimensional Integral Imaging: Sensing, Display, and Applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  44. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D Multiperspective Display by Integral Imaging,” Proc. of IEEE Journal, 97, 1067–1077, June 2009.
  45. L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27(21), 4529–4534 (1988).
    [Crossref] [PubMed]
  46. S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” in ACM Transactions on Graphics (TOG), 2008, 159.

2014 (3)

2013 (11)

C.-T. Hsieh, Y.-F. Hsu, C.-W. Chung, M.-F. Chen, W.-C. Su, and C.-Y. Huang, “Distortion aberration correction device fabricated with liquid crystal lens array,” Opt. Express 21(2), 1937–1943 (2013).
[Crossref] [PubMed]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in Three-Dimensional Integral Imaging: Sensing, Display, and Applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
[Crossref] [PubMed]

L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21(7), 8371–8381 (2013).
[Crossref] [PubMed]

H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

D. Liang and Q.-H. Wang, “Thermally tunable-focus lenticular lens using liquid crystal,” J. Display Technol. 9(10), 814–818 (2013).

K. C. Heo, S. H. Yu, J. H. Kwon, and J. S. Gwag, “Thermally tunable-focus lenticular lens using liquid crystal,” Appl. Opt. 52(35), 8460–8464 (2013).
[Crossref] [PubMed]

M. Singer, J. Endres, A. Yetasook, W. Halabi, I. Voskresensky, M. J. Stamos, and R. Clements, “Evaluation of 3-D laparoscopy to complete surgical skills tasks,” Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons 27(S304–S503), 520 ( 2013).

Y.-P. Huang, C.-W. Chen, M. Cho, and B. Javidi, “Liquid crystal lens for axially distributed three-dimensional sensing,” Proc. SPIE 8738, 873804 (2013).
[Crossref]

K. W. Ian, M. Exarchos, and M. Missous, “A novel low temperature soft reflow process for the fabrication of deep-submicron (<0.35 μm) T-gate pseudomorphic high electron mobility transistor structures,” Nanotechnology 24(5), 055202 (2013).
[Crossref] [PubMed]

F. M. Pargon, “Atomic force microscopy study of photoresist sidewall smoothing and line edge roughness transfer during gate patterning,” J. Micro/Nanolith. MEMS MOEMS. 12(4), 041308 (2013).

2012 (10)

P. C.-P. Chao, Y.-Y. Kao, and C.-J. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photon. J. 4(1), 250–266 (2012).
[Crossref]

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for fast switching liquid crystal lens on 2D/3D switchable auto-stereoscopic display,” IEEE J. Displ. Technol. 8(10), 559–561 (2012).
[Crossref]

M. Xu, H. Ren, C. Nah, S. H. Lee, and Y. Liu, “Liquid crystal microlenticular array assembled by a fringing field,” J. Appl. Phys. 111(6), 063104 (2012).
[Crossref]

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
[Crossref] [PubMed]

H. Milton, P. Brimicombe, P. Morgan, H. Gleeson, and J. Clamp, “Optimization of refractive liquid crystal lenses using an efficient multigrid simulation,” Opt. Express 20(10), 11159–11165 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

G. Shibuya, N. Okuzawa, and M. Hayashi, “New application of liquid crystal lens of active polarized filter for micro camera,” Opt. Express 20(25), 27520–27529 (2012).
[Crossref] [PubMed]

Y. Yi-Pai Huang, C.-W. Chen, and Y.-C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technol. 8(11), 650–655 (2012).

S. Xu, H. Ren, and S.-T. Wu, “Adaptive liquid lens actuated by liquid crystal pistons,” Opt. Express 20(27), 28518–28523 (2012).
[Crossref] [PubMed]

2011 (1)

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Transactions on Electrical and Electronic Materials 12(6), 234–240 (2011).
[Crossref]

2010 (1)

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2D/3D switchable autostereoscopic display with multi-electrically driven liquid crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

2009 (1)

2006 (3)

2005 (1)

C. M. Waits, B. Morgan, M. J. Kastantin, and R. Ghodssi, “Microfabrication of 3D Silicon MEMS Structures using Gray-scale Lithography and Deep Reactive Ion Etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

2004 (2)

1998 (1)

1994 (2)

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[Crossref] [PubMed]

Z. He, T. Nose, and S. Sato, “Optical Performance of Liquid Crystal Cells with Asymmetric Slit-Patterned Electrodes in Various Applied Field Configurations,” Jpn. J. Appl. Phys. 33(1), 1091–1095 (1994).
[Crossref]

1988 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).

Arai, J.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[Crossref]

Bos, P. J.

Brimicombe, P.

Bryant, D.

Chang, Y.-C.

Chao, P. C.-P.

P. C.-P. Chao, Y.-Y. Kao, and C.-J. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photon. J. 4(1), 250–266 (2012).
[Crossref]

Chen, C. W.

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for fast switching liquid crystal lens on 2D/3D switchable auto-stereoscopic display,” IEEE J. Displ. Technol. 8(10), 559–561 (2012).
[Crossref]

Chen, C.-W.

Y.-P. Huang, C.-W. Chen, M. Cho, and B. Javidi, “Liquid crystal lens for axially distributed three-dimensional sensing,” Proc. SPIE 8738, 873804 (2013).
[Crossref]

Y. Yi-Pai Huang, C.-W. Chen, and Y.-C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technol. 8(11), 650–655 (2012).

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2D/3D switchable autostereoscopic display with multi-electrically driven liquid crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Chen, H.-S.

Chen, M.-F.

Chen, M.-S.

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Transactions on Electrical and Electronic Materials 12(6), 234–240 (2011).
[Crossref]

Chen, P. C.

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for fast switching liquid crystal lens on 2D/3D switchable auto-stereoscopic display,” IEEE J. Displ. Technol. 8(10), 559–561 (2012).
[Crossref]

Cho, M.

Y.-P. Huang, C.-W. Chen, M. Cho, and B. Javidi, “Liquid crystal lens for axially distributed three-dimensional sensing,” Proc. SPIE 8738, 873804 (2013).
[Crossref]

Chung, C.-W.

Clamp, J.

Clements, R.

M. Singer, J. Endres, A. Yetasook, W. Halabi, I. Voskresensky, M. J. Stamos, and R. Clements, “Evaluation of 3-D laparoscopy to complete surgical skills tasks,” Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons 27(S304–S503), 520 ( 2013).

Crawford, G. P.

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[Crossref] [PubMed]

DaneshPanah, M.

Davies, N.

Doane, J. W.

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[Crossref] [PubMed]

Endres, J.

M. Singer, J. Endres, A. Yetasook, W. Halabi, I. Voskresensky, M. J. Stamos, and R. Clements, “Evaluation of 3-D laparoscopy to complete surgical skills tasks,” Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons 27(S304–S503), 520 ( 2013).

Exarchos, M.

K. W. Ian, M. Exarchos, and M. Missous, “A novel low temperature soft reflow process for the fabrication of deep-submicron (<0.35 μm) T-gate pseudomorphic high electron mobility transistor structures,” Nanotechnology 24(5), 055202 (2013).
[Crossref] [PubMed]

Ghodssi, R.

C. M. Waits, B. Morgan, M. J. Kastantin, and R. Ghodssi, “Microfabrication of 3D Silicon MEMS Structures using Gray-scale Lithography and Deep Reactive Ion Etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

Gleeson, H.

Gwag, J. S.

Halabi, W.

M. Singer, J. Endres, A. Yetasook, W. Halabi, I. Voskresensky, M. J. Stamos, and R. Clements, “Evaluation of 3-D laparoscopy to complete surgical skills tasks,” Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons 27(S304–S503), 520 ( 2013).

Hayashi, M.

He, Z.

Z. He, T. Nose, and S. Sato, “Optical Performance of Liquid Crystal Cells with Asymmetric Slit-Patterned Electrodes in Various Applied Field Configurations,” Jpn. J. Appl. Phys. 33(1), 1091–1095 (1994).
[Crossref]

Heo, K. C.

Hong, Q.

Hoshino, H.

Hsieh, C.-T.

Hsu, C. J.

Hsu, C.-J.

P. C.-P. Chao, Y.-Y. Kao, and C.-J. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photon. J. 4(1), 250–266 (2012).
[Crossref]

Hsu, Y.-F.

Huang, C.-Y.

Huang, Y. P.

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for fast switching liquid crystal lens on 2D/3D switchable auto-stereoscopic display,” IEEE J. Displ. Technol. 8(10), 559–561 (2012).
[Crossref]

Huang, Y.-C.

Huang, Y.-P.

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

Y.-P. Huang, C.-W. Chen, M. Cho, and B. Javidi, “Liquid crystal lens for axially distributed three-dimensional sensing,” Proc. SPIE 8738, 873804 (2013).
[Crossref]

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2D/3D switchable autostereoscopic display with multi-electrically driven liquid crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Y.-P. Huang, H.-P. D. Shieh, and S.-T. Wu, “Applications of multidirectional asymmetrical microlens-array light-control films on reflective liquid-crystal displays for image quality enhancement,” Appl. Opt. 43(18), 3656–3663 (2004).
[Crossref] [PubMed]

Hwang, S.-J.

Ian, K. W.

K. W. Ian, M. Exarchos, and M. Missous, “A novel low temperature soft reflow process for the fabrication of deep-submicron (<0.35 μm) T-gate pseudomorphic high electron mobility transistor structures,” Nanotechnology 24(5), 055202 (2013).
[Crossref] [PubMed]

Ishikuro, S.

M. Kawamura, E. Yumoto, and S. Ishikuro, “Three-dimensional imaging system by using a liquid crystal lens,” Proc. Int’l Symp. Optomechatron. Technol.2, 1–6, (2012).
[Crossref]

Isono, H.

Javidi, B.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in Three-Dimensional Integral Imaging: Sensing, Display, and Applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

Y.-P. Huang, C.-W. Chen, M. Cho, and B. Javidi, “Liquid crystal lens for axially distributed three-dimensional sensing,” Proc. SPIE 8738, 873804 (2013).
[Crossref]

M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34(7), 1105–1107 (2009).
[Crossref] [PubMed]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D Multiperspective Display by Integral Imaging,” Proc. of IEEE Journal, 97, 1067–1077, June 2009.

Jen, T.-H.

Kao, Y.-Y.

P. C.-P. Chao, Y.-Y. Kao, and C.-J. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photon. J. 4(1), 250–266 (2012).
[Crossref]

Kastantin, M. J.

C. M. Waits, B. Morgan, M. J. Kastantin, and R. Ghodssi, “Microfabrication of 3D Silicon MEMS Structures using Gray-scale Lithography and Deep Reactive Ion Etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

Kawamura, M.

M. Kawamura, E. Yumoto, and S. Ishikuro, “Three-dimensional imaging system by using a liquid crystal lens,” Proc. Int’l Symp. Optomechatron. Technol.2, 1–6, (2012).
[Crossref]

Kostival, B. C.

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[Crossref] [PubMed]

Kwon, J. H.

Lavrentovich, O. D.

Lee, C.

Lee, S. H.

M. Xu, H. Ren, C. Nah, S. H. Lee, and Y. Liu, “Liquid crystal microlenticular array assembled by a fringing field,” J. Appl. Phys. 111(6), 063104 (2012).
[Crossref]

Li, L.

Liang, D.

Liao, L.-Y.

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2D/3D switchable autostereoscopic display with multi-electrically driven liquid crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Lien, A.

Lin, H.-C.

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Transactions on Electrical and Electronic Materials 12(6), 234–240 (2011).
[Crossref]

Lin, Y.-H.

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).

Liu, Y.

H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
[Crossref] [PubMed]

M. Xu, H. Ren, C. Nah, S. H. Lee, and Y. Liu, “Liquid crystal microlenticular array assembled by a fringing field,” J. Appl. Phys. 111(6), 063104 (2012).
[Crossref]

Liu, Y.-X.

Lo, C.-C.

Martinez-Corral, M.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in Three-Dimensional Integral Imaging: Sensing, Display, and Applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D Multiperspective Display by Integral Imaging,” Proc. of IEEE Journal, 97, 1067–1077, June 2009.

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D Multiperspective Display by Integral Imaging,” Proc. of IEEE Journal, 97, 1067–1077, June 2009.

McCormick, M.

Milton, H.

Missous, M.

K. W. Ian, M. Exarchos, and M. Missous, “A novel low temperature soft reflow process for the fabrication of deep-submicron (<0.35 μm) T-gate pseudomorphic high electron mobility transistor structures,” Nanotechnology 24(5), 055202 (2013).
[Crossref] [PubMed]

Mitani, K.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[Crossref]

Morgan, B.

C. M. Waits, B. Morgan, M. J. Kastantin, and R. Ghodssi, “Microfabrication of 3D Silicon MEMS Structures using Gray-scale Lithography and Deep Reactive Ion Etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

Morgan, P.

Nah, C.

M. Xu, H. Ren, C. Nah, S. H. Lee, and Y. Liu, “Liquid crystal microlenticular array assembled by a fringing field,” J. Appl. Phys. 111(6), 063104 (2012).
[Crossref]

Nose, T.

Z. He, T. Nose, and S. Sato, “Optical Performance of Liquid Crystal Cells with Asymmetric Slit-Patterned Electrodes in Various Applied Field Configurations,” Jpn. J. Appl. Phys. 33(1), 1091–1095 (1994).
[Crossref]

Okano, F.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[Crossref]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065 (1998).
[Crossref]

Okui, M.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[Crossref]

Okuzawa, N.

Pargon, F. M.

F. M. Pargon, “Atomic force microscopy study of photoresist sidewall smoothing and line edge roughness transfer during gate patterning,” J. Micro/Nanolith. MEMS MOEMS. 12(4), 041308 (2013).

Pishnyak, O.

Polak, R. D.

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[Crossref] [PubMed]

Porter, G. A.

Ren, H.

Saavedra, G.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D Multiperspective Display by Integral Imaging,” Proc. of IEEE Journal, 97, 1067–1077, June 2009.

Sato, S.

Sheu, C. R.

Shibuya, G.

Shieh, H.-P. D.

Singer, M.

M. Singer, J. Endres, A. Yetasook, W. Halabi, I. Voskresensky, M. J. Stamos, and R. Clements, “Evaluation of 3-D laparoscopy to complete surgical skills tasks,” Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons 27(S304–S503), 520 ( 2013).

Stamos, M. J.

M. Singer, J. Endres, A. Yetasook, W. Halabi, I. Voskresensky, M. J. Stamos, and R. Clements, “Evaluation of 3-D laparoscopy to complete surgical skills tasks,” Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons 27(S304–S503), 520 ( 2013).

Stern, A.

Su, W.-C.

Takahashi, S.

Ting, C.-H.

Uchida, M.

Van Heugten, T.

Voskresensky, I.

M. Singer, J. Endres, A. Yetasook, W. Halabi, I. Voskresensky, M. J. Stamos, and R. Clements, “Evaluation of 3-D laparoscopy to complete surgical skills tasks,” Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons 27(S304–S503), 520 ( 2013).

Waits, C. M.

C. M. Waits, B. Morgan, M. J. Kastantin, and R. Ghodssi, “Microfabrication of 3D Silicon MEMS Structures using Gray-scale Lithography and Deep Reactive Ion Etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

Wang, B.

Wang, Q.-H.

Wu, S.-T.

Xiao, X.

Xu, M.

M. Xu, H. Ren, C. Nah, S. H. Lee, and Y. Liu, “Liquid crystal microlenticular array assembled by a fringing field,” J. Appl. Phys. 111(6), 063104 (2012).
[Crossref]

Xu, S.

Yanase, S.

Yang, C.-M.

Yang, L.

Ye, M.

Yetasook, A.

M. Singer, J. Endres, A. Yetasook, W. Halabi, I. Voskresensky, M. J. Stamos, and R. Clements, “Evaluation of 3-D laparoscopy to complete surgical skills tasks,” Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons 27(S304–S503), 520 ( 2013).

Yi-Pai Huang, Y.

Yu, S. H.

Yumoto, E.

M. Kawamura, E. Yumoto, and S. Ishikuro, “Three-dimensional imaging system by using a liquid crystal lens,” Proc. Int’l Symp. Optomechatron. Technol.2, 1–6, (2012).
[Crossref]

Yuyama, I.

Zhu, R.

Zumer, S.

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[Crossref] [PubMed]

Appl. Opt. (8)

Y.-P. Huang, H.-P. D. Shieh, and S.-T. Wu, “Applications of multidirectional asymmetrical microlens-array light-control films on reflective liquid-crystal displays for image quality enhancement,” Appl. Opt. 43(18), 3656–3663 (2004).
[Crossref] [PubMed]

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

R. Zhu, S. Xu, Q. Hong, S.-T. Wu, C. Lee, C.-M. Yang, C.-C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
[Crossref] [PubMed]

K. C. Heo, S. H. Yu, J. H. Kwon, and J. S. Gwag, “Thermally tunable-focus lenticular lens using liquid crystal,” Appl. Opt. 52(35), 8460–8464 (2013).
[Crossref] [PubMed]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in Three-Dimensional Integral Imaging: Sensing, Display, and Applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27(21), 4529–4534 (1988).
[Crossref] [PubMed]

IEEE J. Displ. Technol. (1)

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for fast switching liquid crystal lens on 2D/3D switchable auto-stereoscopic display,” IEEE J. Displ. Technol. 8(10), 559–561 (2012).
[Crossref]

IEEE Photon. J. (1)

P. C.-P. Chao, Y.-Y. Kao, and C.-J. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photon. J. 4(1), 250–266 (2012).
[Crossref]

J. Appl. Phys. (1)

M. Xu, H. Ren, C. Nah, S. H. Lee, and Y. Liu, “Liquid crystal microlenticular array assembled by a fringing field,” J. Appl. Phys. 111(6), 063104 (2012).
[Crossref]

J. Display Technol. (2)

J. Micro/Nanolith. MEMS MOEMS. (1)

F. M. Pargon, “Atomic force microscopy study of photoresist sidewall smoothing and line edge roughness transfer during gate patterning,” J. Micro/Nanolith. MEMS MOEMS. 12(4), 041308 (2013).

J. Opt. Soc. Am. A (1)

J. Phys. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).

J. Soc. Inf. Disp. (1)

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2D/3D switchable autostereoscopic display with multi-electrically driven liquid crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Jpn. J. Appl. Phys. (2)

Z. He, T. Nose, and S. Sato, “Optical Performance of Liquid Crystal Cells with Asymmetric Slit-Patterned Electrodes in Various Applied Field Configurations,” Jpn. J. Appl. Phys. 33(1), 1091–1095 (1994).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Nanotechnology (1)

K. W. Ian, M. Exarchos, and M. Missous, “A novel low temperature soft reflow process for the fabrication of deep-submicron (<0.35 μm) T-gate pseudomorphic high electron mobility transistor structures,” Nanotechnology 24(5), 055202 (2013).
[Crossref] [PubMed]

Opt. Express (12)

S. Xu, H. Ren, and S.-T. Wu, “Adaptive liquid lens actuated by liquid crystal pistons,” Opt. Express 20(27), 28518–28523 (2012).
[Crossref] [PubMed]

H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

S.-J. Hwang, Y.-X. Liu, and G. A. Porter, “Improvement of performance of liquid crystal microlens with polymer surface modification,” Opt. Express 22(4), 4620–4627 (2014).
[Crossref] [PubMed]

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21(7), 8371–8381 (2013).
[Crossref] [PubMed]

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
[Crossref] [PubMed]

H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref] [PubMed]

H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
[Crossref] [PubMed]

C.-T. Hsieh, Y.-F. Hsu, C.-W. Chung, M.-F. Chen, W.-C. Su, and C.-Y. Huang, “Distortion aberration correction device fabricated with liquid crystal lens array,” Opt. Express 21(2), 1937–1943 (2013).
[Crossref] [PubMed]

G. Shibuya, N. Okuzawa, and M. Hayashi, “New application of liquid crystal lens of active polarized filter for micro camera,” Opt. Express 20(25), 27520–27529 (2012).
[Crossref] [PubMed]

H. Milton, P. Brimicombe, P. Morgan, H. Gleeson, and J. Clamp, “Optimization of refractive liquid crystal lenses using an efficient multigrid simulation,” Opt. Express 20(10), 11159–11165 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[Crossref] [PubMed]

Proc. IEEE (1)

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[Crossref]

Proc. SPIE (1)

Y.-P. Huang, C.-W. Chen, M. Cho, and B. Javidi, “Liquid crystal lens for axially distributed three-dimensional sensing,” Proc. SPIE 8738, 873804 (2013).
[Crossref]

Sens. Actuators A Phys. (1)

C. M. Waits, B. Morgan, M. J. Kastantin, and R. Ghodssi, “Microfabrication of 3D Silicon MEMS Structures using Gray-scale Lithography and Deep Reactive Ion Etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons (1)

M. Singer, J. Endres, A. Yetasook, W. Halabi, I. Voskresensky, M. J. Stamos, and R. Clements, “Evaluation of 3-D laparoscopy to complete surgical skills tasks,” Surgical Endoscopy: 2013 Sci. Sess. Soc. Amer. Gastrointest. Endoscop. Surgeons 27(S304–S503), 520 ( 2013).

Transactions on Electrical and Electronic Materials (1)

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Transactions on Electrical and Electronic Materials 12(6), 234–240 (2011).
[Crossref]

Other (7)

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, Second Edition (John Wiley and Sons, Ltd 2014), Chap.12.

I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).

M. Kawamura, E. Yumoto, and S. Ishikuro, “Three-dimensional imaging system by using a liquid crystal lens,” Proc. Int’l Symp. Optomechatron. Technol.2, 1–6, (2012).
[Crossref]

Y. C. Chen, L. Y. Liao, Y. P. Huang, and H. P. Shieh, “Extremely-fast focusing gradient driven liquid crystal lens driven by ultra-low operating voltages,” International Display Manufacturing Conference, PS-028, (2011).

A. Hassanfiroozi, T.-H. Jen, Y.-P. Huang, and H.-P. D. Shieh, “Liquid crystal lens array for a 3D endoscope,” Biomedical Optics & Medical Imaging, SPIE Newsroom (2014).

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D Multiperspective Display by Integral Imaging,” Proc. of IEEE Journal, 97, 1067–1077, June 2009.

S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” in ACM Transactions on Graphics (TOG), 2008, 159.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Fabrication of the convex circular electrode. (a) Exposure with a UV lamp through the mask after spin-coating and soft bake, (b) Development, (c) heat treatment at 130°C (softening point), (d) 100 nm ITO is sputtered, (e) Mask alignment and exposure with a UV a lamp through the mask after spin-coating on ITO and soft bake, (f) Development, (g) Wet etching is performed, (h) Polymer (NOA81) is coated to cover the electrodes.
Fig. 2
Fig. 2 Schematic of the liquid crystal (LC) lens array structure with convex-ring electrode, including a voltage source.
Fig. 3
Fig. 3 Indium tin oxide (red) on a hexagonal pattern. Each lens can be applied with different voltages or same voltage.
Fig. 4
Fig. 4 (a) Photo of the fabricated Hexagonal LC micro- lens array, (b) Microscopic image of the hexagonal convex curved electrodes.
Fig. 5
Fig. 5 Simulated results for the same applied voltage, An LC using a flat electrode (left) and convex-ring electrode (right).
Fig. 6
Fig. 6 Experimental setup for 3D endoscopy using Hexagonal LC lens array.
Fig. 7
Fig. 7 Focal length variation vs. voltage for flat electrode (pink squares) and convex-ring electrode (green squares).
Fig. 8
Fig. 8 Interference patterns for proposed LC lens.
Fig. 9
Fig. 9 Phase shift profiles comparison for flat-electrode and convex-ring electrode with different applied voltages.
Fig. 10
Fig. 10 (a) An endoscope with the embedded hexagonal convex-ring electrode LC lens placed in front of the endoscope, (b) captured image in each LC lens.
Fig. 11
Fig. 11 (a) Schematic of reconstructing a 3D image from 2D images obtained by LC lens array. (b) 3D image extracted from 2D elemental image array captured by the hexagonal LC -lens array and the endoscope.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f e l a s t i c = 1 2 k 11 ( n ) 2 + 1 2 k 22 ( n × n ) 2 + 1 2 k 33 ( n × × n ) 2
f e l e c t r i c = 1 2 [ ε E 2 + Δ ε ( n E ) 2 ]
F t o t a l = f e l a s t i c + f e l e c t r i c = 1 2 k 11 ( n ) 2 + 1 2 k 22 ( n × n ) 2 + 1 2 k 33 ( n × × n ) 2 1 2 [ ε E 2 + Δ ε ( n E ) 2 ]
E b = V ε l c ( d l c ε l c + d i n s ε i n s )
E c = V d l c
1 f ( V ) = 1 f l c ( V ) + 1 f i n s ( V )
φ = 2 π d l c Δ n λ

Metrics