Abstract

Surface magnetoplasmons (SMPs) in a basic physical model for the terahertz regime, which consists of a semi-infinite magnetized semiconductor with dielectric cladding terminated by a metal slab, are theoretically investigated. The dispersion properties of such SMPs are analyzed and examined in detail. It is shown that SMPs may follow three different kinds of dispersion diagrams, depending on the applied dc magnetic field intensity. Complete one-way propagation that operates within the band gap of the semiconductor is available for SMPs, and the one-way bandwidth reaches a maximum at a certain magnetic field intensity. Regular modes guided by the dielectric layer are also analyzed. These modes may cause the (complete) SMP one-way region to be compressed or even removed, but they can be suppressed by reducing the dielectric layer thickness. Owing to the mirror effect of the metal slab, one-way propagating and backscattering-immune basic SMPs can exhibit a larger propagation length than those sustained by a single dielectric–semiconductor interface.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stopping terahertz radiation without backscattering over a broad band

Linfang Shen, Xiaodong Zheng, and Xiaohua Deng
Opt. Express 23(9) 11790-11798 (2015)

Unidirectional-propagating surface magnetoplasmon based on remanence and its application for subwavelength isolators

Yun You, Sanshui Xiao, Chiaho Wu, Hang Zhang, Xiaohua Deng, and Linfang Shen
Opt. Mater. Express 9(5) 2415-2425 (2019)

Complete trapping of electromagnetic radiation using surface magnetoplasmons

Linfang Shen, Zhuoyuan Wang, Xiaohua Deng, Jin-Jei Wu, and Tzong-Jer Yang
Opt. Lett. 40(8) 1853-1856 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
    [Crossref] [PubMed]
  2. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
    [Crossref]
  3. R. E. Prange and S. M. Girvin, eds. The Quantum Hall Effect, (Springer, 1987).
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2. (Princeton University, 2008).
  5. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
    [Crossref] [PubMed]
  6. X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
    [Crossref]
  7. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
    [Crossref] [PubMed]
  8. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
    [Crossref]
  9. A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
    [Crossref]
  10. L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
    [Crossref] [PubMed]
  11. K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nature Photon. 6(11), 782–787 (2012).
    [Crossref]
  12. A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Mater. 12(3), 233–239 (2013).
    [Crossref]
  13. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
    [Crossref] [PubMed]
  14. H. B. Zhu and C. Jiang, “Broadband unidirectional electromagnetic mode at interface of anti-parallel magnetized media,” Opt. Express 18(7), 6914–6921 (2010).
    [Crossref] [PubMed]
  15. B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett. 37(11), 1895–1897 (2012).
    [Crossref] [PubMed]
  16. V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86(4), 045403 (2012).
    [Crossref]
  17. X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
    [Crossref]
  18. J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
    [Crossref]
  19. R. F. Wallis, J. J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
    [Crossref]
  20. M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
    [Crossref]
  21. M. S. Kushwaha and B. D. Rouhani, “Theory of magnetoplasmons in semiconductor superlattices in the Voigt geometry: A Green-function approach,” Phys. Rev. B 43(11), 9021–9032 (1991).
    [Crossref]
  22. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
    [Crossref]
  23. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  24. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of ContinuousMedia, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).

2013 (2)

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Mater. 12(3), 233–239 (2013).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

2012 (4)

V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86(4), 045403 (2012).
[Crossref]

X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nature Photon. 6(11), 782–787 (2012).
[Crossref]

B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett. 37(11), 1895–1897 (2012).
[Crossref] [PubMed]

2011 (1)

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[Crossref]

X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

2008 (5)

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

1991 (1)

M. S. Kushwaha and B. D. Rouhani, “Theory of magnetoplasmons in semiconductor superlattices in the Voigt geometry: A Green-function approach,” Phys. Rev. B 43(11), 9021–9032 (1991).
[Crossref]

1987 (1)

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
[Crossref]

1974 (1)

R. F. Wallis, J. J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[Crossref]

1972 (1)

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

Ao, X.

X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

Ayache, M.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Barnes, W. L.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

Baryshev, A. V.

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[Crossref]

Brion, J. J.

R. F. Wallis, J. J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[Crossref]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

Burstein, E.

R. F. Wallis, J. J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[Crossref]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

Chan, C. T.

X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

Chen, Y. F.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Dreisow, F.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Eyderman, S.

V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86(4), 045403 (2012).
[Crossref]

Fainman, Y.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Fan, S.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nature Photon. 6(11), 782–787 (2012).
[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

Fang, K.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nature Photon. 6(11), 782–787 (2012).
[Crossref]

Feng, L.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Haldane, F. D. M.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

Halevi, P.

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
[Crossref]

Hartstein, A.

R. F. Wallis, J. J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[Crossref]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

Hendry, E.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

Hu, B.

Huang, J.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Inoue, M.

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[Crossref]

Isaac, T. H.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

Jiang, C.

Jiang, X. Y.

X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
[Crossref]

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2. (Princeton University, 2008).

Kargarian, M.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Mater. 12(3), 233–239 (2013).
[Crossref]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Mater. 12(3), 233–239 (2013).
[Crossref]

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[Crossref]

Kivshar, Y. S.

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[Crossref]

Kushwaha, M. S.

M. S. Kushwaha and B. D. Rouhani, “Theory of magnetoplasmons in semiconductor superlattices in the Voigt geometry: A Green-function approach,” Phys. Rev. B 43(11), 9021–9032 (1991).
[Crossref]

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
[Crossref]

Kuzmiak, V.

V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86(4), 045403 (2012).
[Crossref]

Landau, L. D.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of ContinuousMedia, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).

Lee, Y. S.

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Li, W.

X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
[Crossref]

Lifshitz, E. M.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of ContinuousMedia, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).

Lin, Z.

X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

Lu, M. H.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Lumer, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

MacDonald, A. H.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Mater. 12(3), 233–239 (2013).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2. (Princeton University, 2008).

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Mater. 12(3), 233–239 (2013).
[Crossref]

Nolte, S.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Pitaevskii, L. P.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of ContinuousMedia, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).

Plotnik, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Podolsky, D.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Raghu, S.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

Rechtsman, M. C.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Rouhani, B. D.

M. S. Kushwaha and B. D. Rouhani, “Theory of magnetoplasmons in semiconductor superlattices in the Voigt geometry: A Green-function approach,” Phys. Rev. B 43(11), 9021–9032 (1991).
[Crossref]

Scherer, A.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Segev, M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Mater. 12(3), 233–239 (2013).
[Crossref]

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Szameit, A.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Tse, W. K.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Mater. 12(3), 233–239 (2013).
[Crossref]

Vanwolleghem, M.

V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86(4), 045403 (2012).
[Crossref]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

Wallis, R. F.

R. F. Wallis, J. J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[Crossref]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

Wang, Q. J.

Wang, Z.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2. (Princeton University, 2008).

Xu, Y. L.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Yu, Z.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nature Photon. 6(11), 782–787 (2012).
[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

Zeuner, J. M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Zhang, X. G.

X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
[Crossref]

Zhang, Y.

Zhu, H. B.

Appl. Phys. Lett. (3)

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009).
[Crossref]

X. G. Zhang, W. Li, and X. Y. Jiang, “Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender,” Appl. Phys. Lett. 100(4), 041108 (2012).
[Crossref]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

Nature (2)

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Nature Mater. (1)

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Mater. 12(3), 233–239 (2013).
[Crossref]

Nature Photon. (1)

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nature Photon. 6(11), 782–787 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

Phys. Rev. B (5)

X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86(4), 045403 (2012).
[Crossref]

R. F. Wallis, J. J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[Crossref]

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
[Crossref]

M. S. Kushwaha and B. D. Rouhani, “Theory of magnetoplasmons in semiconductor superlattices in the Voigt geometry: A Green-function approach,” Phys. Rev. B 43(11), 9021–9032 (1991).
[Crossref]

Phys. Rev. Lett. (4)

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 23902 (2008).
[Crossref]

Science (1)

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Other (4)

R. E. Prange and S. M. Girvin, eds. The Quantum Hall Effect, (Springer, 1987).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2. (Princeton University, 2008).

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of ContinuousMedia, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the basic physical model (upper panel) of terahertz one-way SMPs. Owing to the mirror effect of the metal slab, this waveguide system is equivalent to that in the lower panel, where two opposite magnetic fields are applied.
Fig. 2
Fig. 2 SMP dispersion diagrams for (a) ωc = 0.05ωp, (b) ωc = 0.1ωp, and (c) ωc = 0.2ωp. Solid lines are the SMP dispersion curves, and dashed lines are the light line in the dielectric. The upper two shaded areas represent the zones of bulk modes in the semiconductor. (d) Magnified view of the upper branch in (a). The other parameters are ε = 15.6, εr = 2.28, and d = 0.16λp for all cases.
Fig. 3
Fig. 3 (a) Complete one-way bandwidth of SMPs as a function of ωc. Solid, dashed, and dotted lines correspond to the dielectrics of air, polymer (εr = 2.28), and silica (εr = 11.68), respectively. (b) Complete one-way range versus ωc for the case of air. The other parameters are the same as in Fig. 2.
Fig. 4
Fig. 4 Dispersion relations of all modes in the guiding system. Solid lines with and without filled circles correspond to the dispersion curves for regular and SMP modes, respectively. Dashed lines represent the light line in the dielectric. (a) d = dc = 0.17λp, (b) d = 0.2λp, (c) d = 0.25λp, and (d) d = 0.29λp. In (a)–(c), the lower shaded area represents the complete one-way region, and the upper one represents the zone of bulk modes in the semiconductor. The other parameters are ε = 15.6, εr = 2.28, and ωc = 0.1ωp for all cases.
Fig. 5
Fig. 5 Simulated electric field amplitudes. For f = 1.81 THz, the source is placed at the polymer–semiconductor interface; for f = 1.88 THz, the source is placed inside the semiconductor, 30 μm below the surface. In the lower panels, a metal rod with a radius of 8 μm is inserted at the polymer–semiconductor interface, which lies at a horizontal distance of 150 μm from the source. The other parameters are the same as in Fig. 4(c).
Fig. 6
Fig. 6 (a) SMP propagation length L (solid line) as a function of d for ω = 0.918ωp. The dashed line represents the L0 value for SMPs sustained by the single interface (i.e., d → ∞). The inset shows the dependence of L on ω for d = dc (solid) and d→∞ (dashed). The scattering frequency of the semiconductor is ν = 0.0025ωp. (b) ηd versus d for ω = 0.918ωp. The other parameters are ε = 15.6, εr = 2.28, and ωc = 0.1ωp.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

ε s = ε 0 [ ε 1 0 i ε 2 0 ε 3 0 i ε 2 0 ε 1 ] ,
ε 1 = ε ( 1 ω p 2 ω 2 ω c 2 ) ,
ε 2 = ε ω c ω p 2 ω ( ω 2 ω c 2 ) ,
ε 3 = ε ( 1 ω p 2 ω 2 ) ,
H y ( x , z ) = [ A 1 exp ( α d x ) + A 2 exp ( α d x ) ] exp [ i ( k z ω t ) ]
H y ( x , z ) = B exp ( α x ) exp [ i ( k z ω t ) ]
α + ε 2 ε 1 k + ε v ε r α d tanh ( α d d ) = 0 ,
ω a = 1 2 ( ω c 2 + 4 ω p 2 ω c ) ,
ω s p + = 1 2 ( ω c 2 + 4 ω p 2 ε ε + ε r + ω c ) .
k + ε 1 ε 2 ε r [ α d tanh ( α d d ) ε r k 0 2 2 k ] = 0 ,
ω b = 1 2 ( ω c 2 + 4 ω p 2 + ω c ) .
ω c ( 1 ) = ε r 2 ( ε + ε r ) ( 2 ε + ε r ) ω p .
ω c ( 2 ) = ε r ε 2 ε r 2 ω p .
( k c f + ) 2 = tanh 2 ( α d d ) tanh 2 ( α d d ) ε r 2 ω s 2 / ε 2 ω c 2 k s 2 ,
k c f + = 1 [ 1 ( ω c ( 2 ) / ω c ) 2 ] ( 1 ε r 2 / ε 2 ) k s .
ω s p = 1 2 ( ω c 2 + 4 ω p 2 ε ε + ε r ω c ) .
k + ε 1 + ε 2 ε r [ α d tanh ( α d d ) + ε r k 0 2 2 k ] = 0 ,
ω c f = ω c 2 + ε ε ε r ω p 2
Δ ω o w = ω c
Δ ω o w = 2 ω p 2 ε r / ( ε + ε r ) ω c 2 + 4 ω p 2 + ω c 2 + 4 ω p 2 ε / ( ε + ε r )
α + ε 2 ε 1 k ε V ε r p tan ( p d ) = 0.
d c = 1 8 ε r ( 4 + ω c 2 / ω p 2 + ω c / ω p ) λ p ,
ε 1 = ε { 1 ( ω + i ν ) ω p 2 ω [ ( ω + i ν ) 2 ω c 2 ] } , ε 2 = ε ω c ω p 2 ω [ ( ω + i v ) 2 ω c 2 ] ,
U s = 1 4 E * d ( ω ε s ) d ω E + 1 4 μ 0 | H | 2 .
η d = 0 d U d d x 0 U s d x + 0 d U d d x ,

Metrics