Abstract

On-chip simultaneous mode and wavelength division-multiplexing (MWDM) is proposed using a tapered directional coupler and multimode interference (MMI) waveguide. A simulation is performed on the two different MWDM architectures, in which, two waveguide eigenmodes and two wavelength channels (1310/1550nm) are multiplexed. One of the proposed devices is compact (6μm x 100μm) and exhibits insertion loss as low as 1.2dB with a cross-talk of (−18dB).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultracompact and broadband asymmetric directional-coupler-based mode division (de)multiplexer

Kolsoom Mehrabi and Abbas Zarifkar
J. Opt. Soc. Am. B 36(7) 1907-1913 (2019)

On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer

Yunhong Ding, Jing Xu, Francesco Da Ros, Bo Huang, Haiyan Ou, and Christophe Peucheret
Opt. Express 21(8) 10376-10382 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
    [Crossref]
  2. J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
    [Crossref] [PubMed]
  3. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  4. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  5. L. B. Soldado and E. C. M. Pennings, “Optical multi-Mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  6. J. Xiao, X. Liu, and X. Sun, “Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures,” Opt. Express 15(13), 8300–8308 (2007).
    [Crossref] [PubMed]
  7. C. Yao, H. G. Bach, R. Zhang, G. Zhou, J. H. Choi, C. Jiang, and R. Kunkel, “An ultracompact multimode interference wavelength splitter employing asymmetrical multi-section structures,” Opt. Express 20(16), 18248–18253 (2012).
    [Crossref] [PubMed]
  8. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
    [Crossref] [PubMed]

2013 (3)

2012 (1)

2007 (1)

2005 (1)

2002 (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

1995 (1)

L. B. Soldado and E. C. M. Pennings, “Optical multi-Mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Bach, H. G.

Choi, J. H.

Da Ros, F.

Dai, D.

Ding, Y.

Greenberg, M.

Huang, B.

Jiang, C.

Kawaguchi, Y.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Kunkel, R.

Li, Z.

Liu, X.

Orenstein, M.

Ou, H.

Pennings, E. C. M.

L. B. Soldado and E. C. M. Pennings, “Optical multi-Mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Peucheret, C.

Shi, Y.

Soldado, L. B.

L. B. Soldado and E. C. M. Pennings, “Optical multi-Mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Sun, X.

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Wang, J.

Xiao, J.

Xiao, X.

Xing, J.

Xu, J.

Yao, C.

Yu, J.

Yu, Y.

Zhang, R.

Zhou, G.

Electron. Lett. (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

J. Lightwave Technol. (1)

L. B. Soldado and E. C. M. Pennings, “Optical multi-Mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic configurations of the mode and wavelength multiplexer (MWDM) (a) two mode multiplexer followed by one MMI wavelength multiplexer; (b) two MMI wavelength multiplexer followed by one mode multiplexer.
Fig. 2
Fig. 2 (a) A schematic configuration of tapered directional coupler. (b) The calculated effective indices as a function of the waveguide width for the 1st two optical eigenmodes for wavelengths of 1310nm and 1550nm. (Thickness of the Si core layer is 220 nm. Blue curve stands for 1310 nm and red for 1550 nm.).
Fig. 3
Fig. 3 (a) The schematic configuration of two mode multiplexer. The simulated light propagation, (b) & (c) when 1550nm light launched at access and bus waveguide respectively, (d) & (e) when 1310 nm light launched at access and bus waveguide respectively.
Fig. 4
Fig. 4 Insertion loss for the coupler, with the access waveguide variation (blue) and waveguide thickness variation (red).
Fig. 5
Fig. 5 a) A schematic of design A: full layout. The light propagation in the proposed multimode wavelength (de)multiplexer with Wmmi = 7.55μm and Lmmi = 1570μm when the input field is: (b) fundamental mode of the 1550 nm wavelength (c) first higher order mode of the 1550 nm wavelength(d) fundamental mode of the 1310 nm wavelength (e) first higher order mode of 1310nm.
Fig. 6
Fig. 6 a) A schematic configuration of the proposed wavelength (de)multiplexer. (b)-(c) Simulated light propagation when 1550 nm and 1310 nm wavelengths are launched, respectively. (Lmmi = 198 µm). (d)- (e) Simulated light propagation when 1550 nm and 1310 nm wavelengths are launched, respectively. (Lmmi = 41.2 µm).
Fig. 7
Fig. 7 MMI insertion loss change for waveguide width and thickness variations (blue and red, respectively).
Fig. 8
Fig. 8 a) A schematic of design B full layout. 8(b) - 8(e) Simulated light propagation for channels D1, D2, D3 and D4, respectively.

Metrics