Abstract

We experimentally demonstrate improved intra-channel nonlinearity tolerance of the root M-shaped pulse (RMP) with respect to the root raised cosine (RRC) pulse in spectrally efficient 128 Gbit/s PDM-16QAM coherent transmission systems. In addition we evaluate the impact of dispersion map and fiber dispersion parameter on the intra-channel nonlinearity tolerance of the RRC pulse and the RMP via both simulation and experimentation. The RMP is shown to have a better nonlinear tolerance than the RRC pulse for most investigated scenarios except for links with zero residual dispersion percentage per span or the zero dispersion region of a fiber. Therefore, the RMP is suitable for extending the maximum reach of spectrally efficient coherent transmission systems in legacy links in addition to currently intensively studied standard single mode fiber (SSMF) based dispersion unmanaged links.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A nonlinearity-tolerant frequency domain root M-shaped pulse for coherent optical communication systems

Xian Xu, Qunbi Zhuge, Benoît Châtelain, Mohamed Morsy-Osman, Mathieu Chagnon, Meng Qiu, and David V. Plant
Opt. Express 21(26) 31966-31982 (2013)

Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping

Ying Gao, John C. Cartledge, Abdullah S. Karar, Scott S.-H. Yam, Maurice O’Sullivan, Charles Laperle, Andrzej Borowiec, and Kim Roberts
Opt. Express 22(2) 1209-1219 (2014)

Investigation of spectrally shaped DFTS-OFDM for long haul transmission

Susmita Adhikari, Sander Jansen, Maxim Kuschnerov, Beril Inan, Marc Bohn, and Werner Rosenkranz
Opt. Express 20(26) B608-B614 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
    [Crossref] [PubMed]
  2. R. Essiambre, G. Kramer, P. Winzer, G. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  3. Y. M. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/S 6b DAC in 65nm CMOS with 256×6b memory,” in Proc. ISSCC (Institute of Electrical and Electronics Engineers, San Francisco, 2011), pp. 194–196.
  4. C. Laperle and M. O’Sullivan, “Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers,” J. Lightwave Technol. 32(4), 629–643 (2014).
    [Crossref]
  5. E. Ip and J. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  6. F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express 20(2), 1360–1369 (2012).
    [Crossref] [PubMed]
  7. Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol. 29(17), 2570–2576 (2011).
    [Crossref]
  8. Y. Gao, J. C. Cartledge, A. S. Karar, S. S.-H. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
    [Crossref] [PubMed]
  9. Q. Zhuge, M. Reimer, A. Borowiec, M. O'Sullivan, and D. V. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion, ” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4D.7.
    [Crossref]
  10. J. G. Proakis, Digital Communications, 4th ed. (McGraw Hill, New-York, 2001).
  11. B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40- and 100-Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).
  12. X. Xu, Q. Zhuge, B. Châtelain, M. Morsy-Osman, M. Chagnon, M. Qiu, and D. V. Plant, “A nonlinearity-tolerant frequency domain root M-shaped pulse for coherent optical communication systems,” Opt. Express 21(26), 31966–31982 (2013).
    [Crossref] [PubMed]
  13. A. S. Karar, Y. Gao, J. C. Cartledge, S. Gazor, M. O'Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Mitigating intra-channel nonlinearity in coherent optical communications using ISI-free polynomial pulses,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Tu3A.7.
    [Crossref]
  14. X. Xu, Q. Zhuge, B. Châtelain, M. Qiu, M. Chagnon, M. Morsy-Osman, W. Wang, and D. V. Plant, “Nonlinearity-tolerant frequency domain root M-shaped pulse for spectrally efficient coherent transmissions,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W1G.3.
    [Crossref]
  15. M. Alfiad and S. Tibuleac, “100G super-Channel transmission over 1500 km of NZ-DSF with 10G neighbors,” IEEE Photon. Technol. Lett. 25(23), 2365–2368 (2013).
    [Crossref]
  16. C. Xia, X. Liu, S. Chandrasekhar, N. K. Fontaine, L. Zhu, and G. Li, “Multi-channel nonlinearity compensation of PDM-QPSK signals in dispersion-managed transmission using dispersion-folded digital backward propagation,” Opt. Express 22(5), 5859–5866 (2014).
    [Crossref] [PubMed]
  17. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Waltham, Massachusetts, 2006).
  18. P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing,” Opt. Lett. 24(21), 1454–1456 (1999).
    [Crossref] [PubMed]
  19. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009).
    [Crossref]
  20. J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters,” J. Lightwave Technol. 30(23), 3679–3686 (2012).
    [Crossref]
  21. http://www.teraxion.com/en/cs-tdcmx .
  22. S. J. Lee, “A new non-data-aided feedforward symbol timing estimator using two samples per symbol,” IEEE Commun. Lett. 6(5), 205–207 (2002).
    [Crossref]
  23. X. Xu, B. Châtelain, and D. V. Plant, “Decision directed least radius distance algorithm for blind equalization in a dual-polarization 16-QAM system,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2H.5.
    [Crossref]
  24. Q. Zhuge, M. Morsy-Osman, X. Xu, M. E. Mousa-Pasandi, M. Chagnon, Z. A. El-Sahn, and D. V. Plant, “Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL,” Opt. Express 20(17), 19599–19609 (2012).
    [Crossref] [PubMed]
  25. D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu, and Q. Xiong, “FPGA verification of a single QC-LDPC code for 100 Gb/s optical systems without error floor down to BER of 10−15,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuN2.
    [Crossref]

2014 (3)

2013 (2)

2012 (3)

2011 (1)

2010 (2)

B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40- and 100-Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

R. Essiambre, G. Kramer, P. Winzer, G. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

2009 (1)

2008 (1)

2002 (1)

S. J. Lee, “A new non-data-aided feedforward symbol timing estimator using two samples per symbol,” IEEE Commun. Lett. 6(5), 205–207 (2002).
[Crossref]

2001 (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[Crossref] [PubMed]

1999 (1)

Alfiad, M.

M. Alfiad and S. Tibuleac, “100G super-Channel transmission over 1500 km of NZ-DSF with 10G neighbors,” IEEE Photon. Technol. Lett. 25(23), 2365–2368 (2013).
[Crossref]

Borowiec, A.

Y. Gao, J. C. Cartledge, A. S. Karar, S. S.-H. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
[Crossref] [PubMed]

B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40- and 100-Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Cartledge, J. C.

Y. Gao, J. C. Cartledge, A. S. Karar, S. S.-H. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
[Crossref] [PubMed]

B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40- and 100-Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Chagnon, M.

Chandrasekhar, S.

Châtelain, B.

X. Xu, Q. Zhuge, B. Châtelain, M. Morsy-Osman, M. Chagnon, M. Qiu, and D. V. Plant, “A nonlinearity-tolerant frequency domain root M-shaped pulse for coherent optical communication systems,” Opt. Express 21(26), 31966–31982 (2013).
[Crossref] [PubMed]

B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40- and 100-Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Dou, L.

El-Sahn, Z. A.

Essiambre, R.

Fontaine, N. K.

Foschini, G.

Gagnon, F.

B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40- and 100-Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Gao, Y.

Goebel, B.

Guiomar, F. P.

Hoshida, T.

Ip, E.

Ishihara, K.

Kahn, J.

Karar, A. S.

Kobayashi, T.

Kramer, G.

Krause, D.

B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40- and 100-Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Kudo, R.

Laperle, C.

Lee, S. J.

S. J. Lee, “A new non-data-aided feedforward symbol timing estimator using two samples per symbol,” IEEE Commun. Lett. 6(5), 205–207 (2002).
[Crossref]

Li, G.

Li, L.

Liu, X.

Mamyshev, P. V.

Mamysheva, N. A.

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[Crossref] [PubMed]

Miyamoto, Y.

Morsy-Osman, M.

Mousa-Pasandi, M. E.

O’Sullivan, M.

Pan, Z.

Pinto, A. N.

Plant, D. V.

Qiu, M.

Rasmussen, J. C.

Reis, J. D.

Roberts, K.

Y. Gao, J. C. Cartledge, A. S. Karar, S. S.-H. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
[Crossref] [PubMed]

B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40- and 100-Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Sano, A.

Stark, J. B.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[Crossref] [PubMed]

Takatori, Y.

Tao, Z.

Teixeira, A. L.

Tibuleac, S.

M. Alfiad and S. Tibuleac, “100G super-Channel transmission over 1500 km of NZ-DSF with 10G neighbors,” IEEE Photon. Technol. Lett. 25(23), 2365–2368 (2013).
[Crossref]

Wang, J.

Winzer, P.

Xia, C.

Xie, C.

Xu, X.

Yam, S. S.-H.

Yan, W.

Zhu, L.

Zhuge, Q.

IEEE Commun. Lett. (1)

S. J. Lee, “A new non-data-aided feedforward symbol timing estimator using two samples per symbol,” IEEE Commun. Lett. 6(5), 205–207 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (2)

B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40- and 100-Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

M. Alfiad and S. Tibuleac, “100G super-Channel transmission over 1500 km of NZ-DSF with 10G neighbors,” IEEE Photon. Technol. Lett. 25(23), 2365–2368 (2013).
[Crossref]

J. Lightwave Technol. (6)

Nature (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Other (9)

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Waltham, Massachusetts, 2006).

A. S. Karar, Y. Gao, J. C. Cartledge, S. Gazor, M. O'Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Mitigating intra-channel nonlinearity in coherent optical communications using ISI-free polynomial pulses,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Tu3A.7.
[Crossref]

X. Xu, Q. Zhuge, B. Châtelain, M. Qiu, M. Chagnon, M. Morsy-Osman, W. Wang, and D. V. Plant, “Nonlinearity-tolerant frequency domain root M-shaped pulse for spectrally efficient coherent transmissions,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W1G.3.
[Crossref]

Y. M. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/S 6b DAC in 65nm CMOS with 256×6b memory,” in Proc. ISSCC (Institute of Electrical and Electronics Engineers, San Francisco, 2011), pp. 194–196.

Q. Zhuge, M. Reimer, A. Borowiec, M. O'Sullivan, and D. V. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion, ” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4D.7.
[Crossref]

J. G. Proakis, Digital Communications, 4th ed. (McGraw Hill, New-York, 2001).

D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu, and Q. Xiong, “FPGA verification of a single QC-LDPC code for 100 Gb/s optical systems without error floor down to BER of 10−15,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuN2.
[Crossref]

http://www.teraxion.com/en/cs-tdcmx .

X. Xu, B. Châtelain, and D. V. Plant, “Decision directed least radius distance algorithm for blind equalization in a dual-polarization 16-QAM system,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2H.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Ideal spectra of the RRC pulse and the RMP at roll-off factors of 0.2, 0.5 and 1.
Fig. 2
Fig. 2 Ideal 4-level eyediagrams of the RRC pulse and the RMP at roll-off factors of 0.2, 0.5 and 1 after matched filter.
Fig. 3
Fig. 3 Ideal impulse response of the RRC pulse and the RMP at roll-off factors of 0.2, 0.5 and 1.
Fig. 4
Fig. 4 The evolution of the normalized RMS pulse width over the transmission distance for the RRC pulse and the RMP at roll-off factors of 0.2, 0.5 and 1.
Fig. 5
Fig. 5 The evolution of the PAPR for the 128 Gbit/s PDM-16QAM signals with the RRC pulse and the RMP shaping at various roll-off factors in the first 400 km transmission.
Fig. 6
Fig. 6 (a) Schematic of the experimental setup. (EDFA: Erbium-doped fiber amplifier; VOA: variable optical attenuator; SW: switch; SSMF: standard single mode fiber; LEAF: large effective area non-zero dispersion-shifted fiber; DCF: dispersion compensation fiber; OSA: optical spectrum analyzer; T-T BPF: tunable bandwidth and tunable central wavelength bandpass filter; ECL: external cavity laser; LO: local oscillator; Rx: receiver; DSP: digital signal processing.); The optical spectra of the RRC pulse (blue line) and the RMP (red line) at roll-off factors of (b) 0.2, (c) 0.5 and (d) 1.
Fig. 7
Fig. 7 Measured BER versus OSNR for the 128 Gbit/s PDM-16QAM signals with the RRC pulse and the RMP shaping at various roll-off factors in the B2B configuration.
Fig. 8
Fig. 8 Measured BER versus OSNR for the 128 Gbit/s PDM-16QAM signals with the RRC pulse and the RMP shaping at 1600 km transmission distance in the SMF-28e+ LL link.
Fig. 9
Fig. 9 Measured achievable transmission distance versus launch power for the 128 Gbit/s PDM-16QAM signals with the RRC pulse and the RMP shaping in the SMF-28e+ LL link.
Fig. 10
Fig. 10 Simulated maximum reach versus the RDPS for the 128 Gbit/s PDM-16QAM signals with the RRC pulse and the RMP shaping in the SMF-28e+ LL link.
Fig. 11
Fig. 11 Simulated extended reach percentage versus RDPS for the 128 Gbit/s PDM-16QAM signals with the RRC pulse and the RMP shaping in the SMF-28e+ LL link.
Fig. 12
Fig. 12 (a) Measured BER versus OSNR at 1500 km transmission distance; (b) measured achievable transmission distance versus launch power for the 128 Gbit/s PDM-16QAM signals with the RRC pulse and the RMP shaping in the LEAF link.
Fig. 13
Fig. 13 Simulated maximum reach versus fiber dispersion parameter for the 128 Gbit/s PDM-16QAM signals with the RRC pulse and the RMP shaping.
Fig. 14
Fig. 14 Simulated extended reach percentage versus fiber dispersion parameter for the 128 Gbit/s PDM-16QAM signals with the RRC pulse and the RMP shaping.

Tables (3)

Tables Icon

Table 1 Summary of the Specification of the Fibers in the Experiments

Tables Icon

Table 2 Summary of Optimal BER for the 128 Gbit/s PDM-16QAM Signals with the RRC Pulse and the RMP Shaping at 1600 km Transmission Distance

Tables Icon

Table 3 Summary of Maximum Reach for the 128 Gbit/s PDM-16QAM Signals with the RRC Pulse and the RMP Shaping and Correspondent Extended Reach Percentage Using the RMP

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

RRC(f)= RC(f) ={ T 0| f |< 1α 2T T 2 { 1+cos[ πT α ( | f | 1α 2T ) ] } 1α 2T | f | 1+α 2T 0 | f |> 1+α 2T
RMP(f)= MP(f) ={ T 0| f |< 1α 2T (1β) T 2 α(1+β) [ | f | 1α 2T ]+ βT 1+β 1α 2T | f | 1+α 2T 0 | f |> 1+α 2T

Metrics