Abstract

We report an experimental study of generation of photo-induced voltage in nano-porous gold (NPG) thin film under the radiation of obliquely incident nanosecond laser light in visible regions. For s- polarized light, negative voltage is observed along the incident plane for positive incident angles, while for p- polarized light, positive voltage is observed for wavelength longer than 510 nm, while it turns to negative for shorter wavelengths. The transverse voltage for various polarized light is explained in terms of symmetry of configuration and that of microscopically random but macroscopically isotropic NPG.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization dependence of transverse photo-induced voltage in gold thin film with random nanoholes

Marjan Akbari and Teruya Ishihara
Opt. Express 25(3) 2143-2152 (2017)

Generation of transverse photo-induced voltage in plasmonic metasurfaces of triangle holes

Marjan Akbari, Jie Gao, and Xiaodong Yang
Opt. Express 26(16) 21194-21203 (2018)

Control of photo-induced voltages in plasmonic crystals via spin-orbit interactions

Nicholas V. Proscia, Matthew Moocarme, Roger Chang, Ilona Kretzschmar, Vinod M. Menon, and Luat T. Vuong
Opt. Express 24(10) 10402-10411 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Hatano, B. Nishikawa, M. Iwanaga, and T. Ishihara, “Optical rectification effect in 1D metallic photonic crystal slabs with asymmetric unit cell,” Opt. Express 16, 8236–8241 (2008).
    [Crossref] [PubMed]
  2. H. Kurosawa, T. Ishihara, N. Ikeda, D. Tsuya, M. Ochiai, and Y. Sugimoto, “Optical rectification effect due to surface plasmon polaritons at normal incidence in a nondiffraction regime,” Opt. Lett. 37, 2793–2795 (2012).
    [Crossref] [PubMed]
  3. S. Luryi, “Photon-drag effect in intersubband absorption by a two-dimensional electron gas,” Phys. Rev. Lett. 58, 2263–2266 (1987).
    [Crossref] [PubMed]
  4. V. L. Gurevich and R. Laiho, “Photomagnetism of metals. first observation of dependence on polarization of light,” Phys. Solid State 42, 1807–1812 (2000).
    [Crossref]
  5. J. E. Goff and W. L. Schaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
    [Crossref]
  6. A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87, 091118 (2005).
    [Crossref]
  7. H. Kurosawa and T. Ishihara, “Surface plasmon drag effect in a dielectrically modulated metallic thin film,” Opt. Express 20, 1561–1574 (2012).
    [Crossref] [PubMed]
  8. T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
    [Crossref] [PubMed]
  9. G. M. Mikheev, R. G. Zonov, and V. A. Aleksandrov, “Light-induced EMF in silver-palladium film resistors,” Technical Physics Letters 36, 675–678 (2010).
    [Crossref]
  10. G. M. Mikheev, A. G. Nasibulin, R. G. Zonov, A. Kaskela, and E. I. Kauppinen, “Photon-drag effect in single-walled carbon nanotube films,” Nano Letters 12, 77–83 (2012).
    [Crossref]
  11. N. Noginova, V. Rono, B. Bates, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
    [Crossref]
  12. A. Wittstock, J. Biener, and M. Bäumer, “Nanoporous gold: a new material for catalytic and sensor applications,” Phys. Chem. Chem. Phys 12, 12919–12930 (2005).
    [Crossref]
  13. B. N. Morozov and Y. M. Aivazyan, “Optical rectification effect and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980).
    [Crossref]
  14. G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Y. P. Svirko, “Optical rectification effect in nanocarbon films,” Technical Physics Letters 30, 750–752 (2004).
    [Crossref]
  15. G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, “Effect of laser light polarisation on the dc photovoltage response of nanographite films,” Quantum Electronics 40, 425–430 (2010).
    [Crossref]
  16. X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
    [Crossref]

2013 (1)

N. Noginova, V. Rono, B. Bates, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

2012 (3)

2011 (1)

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

2010 (2)

G. M. Mikheev, R. G. Zonov, and V. A. Aleksandrov, “Light-induced EMF in silver-palladium film resistors,” Technical Physics Letters 36, 675–678 (2010).
[Crossref]

G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, “Effect of laser light polarisation on the dc photovoltage response of nanographite films,” Quantum Electronics 40, 425–430 (2010).
[Crossref]

2009 (1)

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

2008 (1)

2005 (2)

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87, 091118 (2005).
[Crossref]

A. Wittstock, J. Biener, and M. Bäumer, “Nanoporous gold: a new material for catalytic and sensor applications,” Phys. Chem. Chem. Phys 12, 12919–12930 (2005).
[Crossref]

2004 (1)

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Y. P. Svirko, “Optical rectification effect in nanocarbon films,” Technical Physics Letters 30, 750–752 (2004).
[Crossref]

2000 (1)

V. L. Gurevich and R. Laiho, “Photomagnetism of metals. first observation of dependence on polarization of light,” Phys. Solid State 42, 1807–1812 (2000).
[Crossref]

1997 (1)

J. E. Goff and W. L. Schaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[Crossref]

1987 (1)

S. Luryi, “Photon-drag effect in intersubband absorption by a two-dimensional electron gas,” Phys. Rev. Lett. 58, 2263–2266 (1987).
[Crossref] [PubMed]

1980 (1)

B. N. Morozov and Y. M. Aivazyan, “Optical rectification effect and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980).
[Crossref]

Aivazyan, Y. M.

B. N. Morozov and Y. M. Aivazyan, “Optical rectification effect and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980).
[Crossref]

Aleksandrov, V. A.

G. M. Mikheev, R. G. Zonov, and V. A. Aleksandrov, “Light-induced EMF in silver-palladium film resistors,” Technical Physics Letters 36, 675–678 (2010).
[Crossref]

Bates, B.

N. Noginova, V. Rono, B. Bates, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

Bäumer, M.

A. Wittstock, J. Biener, and M. Bäumer, “Nanoporous gold: a new material for catalytic and sensor applications,” Phys. Chem. Chem. Phys 12, 12919–12930 (2005).
[Crossref]

Biener, J.

A. Wittstock, J. Biener, and M. Bäumer, “Nanoporous gold: a new material for catalytic and sensor applications,” Phys. Chem. Chem. Phys 12, 12919–12930 (2005).
[Crossref]

Caldwell, J. D.

N. Noginova, V. Rono, B. Bates, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

Chen, M.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

Garnov, S. V.

G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, “Effect of laser light polarisation on the dc photovoltage response of nanographite films,” Quantum Electronics 40, 425–430 (2010).
[Crossref]

Gippius, N. A.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

Goff, J. E.

J. E. Goff and W. L. Schaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[Crossref]

Guan, P.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

Gurevich, V. L.

V. L. Gurevich and R. Laiho, “Photomagnetism of metals. first observation of dependence on polarization of light,” Phys. Solid State 42, 1807–1812 (2000).
[Crossref]

Hatano, T.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

T. Hatano, B. Nishikawa, M. Iwanaga, and T. Ishihara, “Optical rectification effect in 1D metallic photonic crystal slabs with asymmetric unit cell,” Opt. Express 16, 8236–8241 (2008).
[Crossref] [PubMed]

Ikeda, N.

Ishihara, T.

Iwanaga, M.

Kaskela, A.

G. M. Mikheev, A. G. Nasibulin, R. G. Zonov, A. Kaskela, and E. I. Kauppinen, “Photon-drag effect in single-walled carbon nanotube films,” Nano Letters 12, 77–83 (2012).
[Crossref]

Kauppinen, E. I.

G. M. Mikheev, A. G. Nasibulin, R. G. Zonov, A. Kaskela, and E. I. Kauppinen, “Photon-drag effect in single-walled carbon nanotube films,” Nano Letters 12, 77–83 (2012).
[Crossref]

Khestanova, E. A.

G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, “Effect of laser light polarisation on the dc photovoltage response of nanographite films,” Quantum Electronics 40, 425–430 (2010).
[Crossref]

Kurosawa, H.

Laiho, R.

V. L. Gurevich and R. Laiho, “Photomagnetism of metals. first observation of dependence on polarization of light,” Phys. Solid State 42, 1807–1812 (2000).
[Crossref]

Lang, X.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

Luryi, S.

S. Luryi, “Photon-drag effect in intersubband absorption by a two-dimensional electron gas,” Phys. Rev. Lett. 58, 2263–2266 (1987).
[Crossref] [PubMed]

Mikheev, G. M.

G. M. Mikheev, A. G. Nasibulin, R. G. Zonov, A. Kaskela, and E. I. Kauppinen, “Photon-drag effect in single-walled carbon nanotube films,” Nano Letters 12, 77–83 (2012).
[Crossref]

G. M. Mikheev, R. G. Zonov, and V. A. Aleksandrov, “Light-induced EMF in silver-palladium film resistors,” Technical Physics Letters 36, 675–678 (2010).
[Crossref]

G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, “Effect of laser light polarisation on the dc photovoltage response of nanographite films,” Quantum Electronics 40, 425–430 (2010).
[Crossref]

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Y. P. Svirko, “Optical rectification effect in nanocarbon films,” Technical Physics Letters 30, 750–752 (2004).
[Crossref]

Morozov, B. N.

B. N. Morozov and Y. M. Aivazyan, “Optical rectification effect and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980).
[Crossref]

Nasibulin, A. G.

G. M. Mikheev, A. G. Nasibulin, R. G. Zonov, A. Kaskela, and E. I. Kauppinen, “Photon-drag effect in single-walled carbon nanotube films,” Nano Letters 12, 77–83 (2012).
[Crossref]

Nishikawa, B.

Noginova, N.

N. Noginova, V. Rono, B. Bates, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

Obraztsov, A. N.

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Y. P. Svirko, “Optical rectification effect in nanocarbon films,” Technical Physics Letters 30, 750–752 (2004).
[Crossref]

Obraztsov, P. A.

G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, “Effect of laser light polarisation on the dc photovoltage response of nanographite films,” Quantum Electronics 40, 425–430 (2010).
[Crossref]

Ochiai, M.

Qian, L.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

Rono, V.

N. Noginova, V. Rono, B. Bates, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

Schaich, W. L.

J. E. Goff and W. L. Schaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[Crossref]

Styapshin, V. M.

G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, “Effect of laser light polarisation on the dc photovoltage response of nanographite films,” Quantum Electronics 40, 425–430 (2010).
[Crossref]

Sugimoto, Y.

Svirko, Y. P.

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Y. P. Svirko, “Optical rectification effect in nanocarbon films,” Technical Physics Letters 30, 750–752 (2004).
[Crossref]

Tikhodeev, S. G.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

Tsuya, D.

Vengurlekar, A. S.

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87, 091118 (2005).
[Crossref]

Wittstock, A.

A. Wittstock, J. Biener, and M. Bäumer, “Nanoporous gold: a new material for catalytic and sensor applications,” Phys. Chem. Chem. Phys 12, 12919–12930 (2005).
[Crossref]

Zi, J.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

Zonov, R. G.

G. M. Mikheev, A. G. Nasibulin, R. G. Zonov, A. Kaskela, and E. I. Kauppinen, “Photon-drag effect in single-walled carbon nanotube films,” Nano Letters 12, 77–83 (2012).
[Crossref]

G. M. Mikheev, R. G. Zonov, and V. A. Aleksandrov, “Light-induced EMF in silver-palladium film resistors,” Technical Physics Letters 36, 675–678 (2010).
[Crossref]

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Y. P. Svirko, “Optical rectification effect in nanocarbon films,” Technical Physics Letters 30, 750–752 (2004).
[Crossref]

Appl. Phys. Lett. (2)

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87, 091118 (2005).
[Crossref]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

Nano Letters (1)

G. M. Mikheev, A. G. Nasibulin, R. G. Zonov, A. Kaskela, and E. I. Kauppinen, “Photon-drag effect in single-walled carbon nanotube films,” Nano Letters 12, 77–83 (2012).
[Crossref]

New J. Phys. (1)

N. Noginova, V. Rono, B. Bates, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys (1)

A. Wittstock, J. Biener, and M. Bäumer, “Nanoporous gold: a new material for catalytic and sensor applications,” Phys. Chem. Chem. Phys 12, 12919–12930 (2005).
[Crossref]

Phys. Rev. B (1)

J. E. Goff and W. L. Schaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[Crossref]

Phys. Rev. Lett. (2)

S. Luryi, “Photon-drag effect in intersubband absorption by a two-dimensional electron gas,” Phys. Rev. Lett. 58, 2263–2266 (1987).
[Crossref] [PubMed]

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

Phys. Solid State (1)

V. L. Gurevich and R. Laiho, “Photomagnetism of metals. first observation of dependence on polarization of light,” Phys. Solid State 42, 1807–1812 (2000).
[Crossref]

Quantum Electronics (1)

G. M. Mikheev, V. M. Styapshin, P. A. Obraztsov, E. A. Khestanova, and S. V. Garnov, “Effect of laser light polarisation on the dc photovoltage response of nanographite films,” Quantum Electronics 40, 425–430 (2010).
[Crossref]

Sov. J. Quantum Electron. (1)

B. N. Morozov and Y. M. Aivazyan, “Optical rectification effect and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980).
[Crossref]

Technical Physics Letters (2)

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Y. P. Svirko, “Optical rectification effect in nanocarbon films,” Technical Physics Letters 30, 750–752 (2004).
[Crossref]

G. M. Mikheev, R. G. Zonov, and V. A. Aleksandrov, “Light-induced EMF in silver-palladium film resistors,” Technical Physics Letters 36, 675–678 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) AFM image of NPG film shows that it is a network of pores and gold. (b) Two configurations for measuring PIV in NPG. The arrow shows definition of the positive incident angle (θ) in the configurations.
Fig. 2
Fig. 2 Setup of the measuring photo-induced voltage in NPG film.
Fig. 3
Fig. 3 Transmission spectra for NPG (blue line) and evaporated gold (red line).
Fig. 4
Fig. 4 (a) Angle resolved TPIV for 550 nm, circular polarized light. (b) Wavelength resolved TPIV for +50° incidence angle, circular polarized light. (c) Angle resolved TPIV for 550 nm, ±45° linear polarized light. (d) Wavelength resolved TPIV for +50° incidence angle, ±45° linear polarized light.
Fig. 5
Fig. 5 (a) Angle resolved LPIV for 580 nm, p- and s- polarized light. (b) Wavelength resolved LPIV for +50° incidence angle, p- and s- polarized light. (c) Angle resolved LPIV for 580 nm, circular polarized light. (d) Wavelength resolved LPIV for +50° incidence angle, circular polarized light.
Fig. 6
Fig. 6 (a) Mirrored transverse configuration. (b) Mirrored longitudinal configuration.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V ( E ) = ( V x ( E ) V y ( E ) )
V m ( E m ) = ( 1 0 0 1 ) V ( E ) = ( V x ( E ) V y ( E ) )
( V x ( E m ) V y ( E m ) ) ( V x ( E ) V y ( E ) )
V ( E ) = ( | z p | 2 V p ( | E | , θ ) + | z s | 2 V s ( | E | , θ ) 2 [ Re ( z p * z s ) V d ( | E | , θ ) + Im ( z p * z s ) V c ( | E | , θ ) ] )

Metrics