Abstract

The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid crystal cells, it was shown that this energy is tunable over an order of magnitude. These results agree with a literature model which predicts the anchoring energy of sinusoidal grooves.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of surface nematic liquid crystal anchoring strength using nano-scale surface grooves

Yoonseuk Choi, Hiroshi Yokoyama, and Jin Seog Gwag
Opt. Express 21(10) 12135-12144 (2013)

Photo-configurable embossed liquid crystal alignment layer with high azimuthal anchoring strength

Dowon Ahn, Yong-Cheol Jeong, Manhee Han, Kuk Young Cho, Seungsup Lee, and Jung-Ki Park
Opt. Express 20(6) 6835-6843 (2012)

Determination of azimuthal anchoring strength in twisted nematic liquid crystal cells using heterodyne polarimeter

Tsung-Chih Yu, Yu-Lung Lo, and Rei-Rong Huang
Opt. Express 18(20) 21169-21182 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. Zheng, Surface Wetting Characteristics of Rubbed Poyimide Thin Films (InTech, 2010).
  2. N. Tabiryan, S. Nersisyan, D. Steeves, and B. Kimball, “The promise of diffractive waveplates,” OPN 21, 40–45 (2010).
  3. S. Valyukh, I. Valyukh, and V. Chigrinov, “Liquid-crystal based light steering optical elements,” PLP 3, 88–90 (2011).
  4. J. Stohr and M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. Relat. Phenom. 98, 189–207 (1999).
    [Crossref]
  5. J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Nanosurfaces of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology 13, 133–137 (2002).
    [Crossref]
  6. T. Shioda, B. Wen, and C. Rosenblatt, “Step-wise freedericksz transition in a nematic liquid crystal,” J. Appl. Phys. 94, 7502–7504 (2003).
    [Crossref]
  7. B. Wen and C. Rosenblatt, “Planar nematic anchoring due to a periodic surface potential,” J. Appl. Phys. 89, 4747–4751 (2001).
    [Crossref]
  8. A. Emoto, E. Uchida, and T. Fukuda, “Optical and physical applications of photocontrollable materials: Azobenzene-containing and liquid crystalline polymers,” Polymers 4, 150–186 (2012).
    [Crossref]
  9. M. O’Neill and S. M. Kelly, “Photoinduced surface alignment for liquid crystal displays,” J. Phys. D: Appl. Phys. 33, 67–84 (2000).
    [Crossref]
  10. A. D. Kiselev, V. Chigrinov, and D. D. Huang, “Photoinduced ordering and anchoring properties of azo-dye films,” Phys. Rev. E 72, 061703 (2005).
    [Crossref]
  11. V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
    [Crossref]
  12. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
    [Crossref]
  13. D. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).
    [Crossref]
  14. S. Faetti, “Azimuthal anchoring energy of a nematic liqud crystal at a grooved interface,” Phys. Rev. A 36, 408–410 (1987).
    [Crossref] [PubMed]
  15. L. Blinov and V. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer Science, 1996).
  16. J. J. Lee, C. H. Oh, G. J. Lee, Y. Lee, and S. H. Paek, “Effects of the surface relief profile on liquid crystal anchoring capabilities of laser-induced periodic surface structures,” J. Korean Phys. Soc. 49, 894–898 (2006).
  17. K. Yang, B. Cord, H. Duan, and K. Berggren, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Tech. B 27, 2622–2627 (2009).
    [Crossref]
  18. U. http://www.microchem.com/ProdGrid.htm (2014).
  19. U. http://transene.com/cr/ (2014).
  20. C.-T. Pan, H. Yang, S.-C. Shen, M.-C. Chou, and H.-P. Chou, “A low-temperature wafer bonding technique using patternable materials,” J. Micromech. Microeng. 12, 611–615 (2002).
    [Crossref]
  21. E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
    [Crossref]
  22. I. Moreno, N. Bennis, J. Davis, and C. Ferreira, “Twist angle determination in liquid crystal displays by location of local adiabatic points,” Opt. Comm. 158, 231–238 (1998).
    [Crossref]
  23. V. Konovalov, A. Muravski, S. Y. Yakovenko, and J. Pelzl, “An accurate spectral method for measuring twist angle of twisted cells with rubbed and grooved surfaces,” SID Int. Sypm. Dig. Tec. 31, 620–623 (2000).
    [Crossref]
  24. O. Roscioni, L. Muccioli, R. D. Valle, A. Pizzirusso, M. Ricci, and C. Zannoni, “Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness,” Langmuir 29, 8950–8958 (2013).
    [Crossref] [PubMed]
  25. T. Nanba, H. Naito, K. Matsukawa, and A. Sugimura, “Weak anchoring of nematic liquid crystals on photo-induced surface relief gratings of organic polysilane,” Thin Solid Films 518, 767–770 (2009).
    [Crossref]
  26. A. K. Dadivanyan, D. N. Chausov, O. Noa, V. V. Belyaev, V. G. Chigrinov, and Y. M. Pashinina, “Influence of the order parameter on the anchoring energy of liquid crystals,” J. Exp. Theor. Phys. 115, 1100–1104 (2012).
    [Crossref]
  27. A. Sugimura and T. Kawamura, “Elastic anchoring energy related to orientational order parameter of nematic liquid crystal,” Jpn. J. Appl. Phys. 24, 245–248 (1985).
    [Crossref]
  28. J.-H. Kim and C. Rosenblatt, “Rubbing strength dependence of surface interaction potential and surface-induced order above the nematic-isotropic transition,” J. Appl. Phys. 84, 6027–6033 (1998).
    [Crossref]

2013 (1)

O. Roscioni, L. Muccioli, R. D. Valle, A. Pizzirusso, M. Ricci, and C. Zannoni, “Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness,” Langmuir 29, 8950–8958 (2013).
[Crossref] [PubMed]

2012 (3)

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

A. K. Dadivanyan, D. N. Chausov, O. Noa, V. V. Belyaev, V. G. Chigrinov, and Y. M. Pashinina, “Influence of the order parameter on the anchoring energy of liquid crystals,” J. Exp. Theor. Phys. 115, 1100–1104 (2012).
[Crossref]

A. Emoto, E. Uchida, and T. Fukuda, “Optical and physical applications of photocontrollable materials: Azobenzene-containing and liquid crystalline polymers,” Polymers 4, 150–186 (2012).
[Crossref]

2011 (1)

S. Valyukh, I. Valyukh, and V. Chigrinov, “Liquid-crystal based light steering optical elements,” PLP 3, 88–90 (2011).

2010 (1)

N. Tabiryan, S. Nersisyan, D. Steeves, and B. Kimball, “The promise of diffractive waveplates,” OPN 21, 40–45 (2010).

2009 (2)

K. Yang, B. Cord, H. Duan, and K. Berggren, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Tech. B 27, 2622–2627 (2009).
[Crossref]

T. Nanba, H. Naito, K. Matsukawa, and A. Sugimura, “Weak anchoring of nematic liquid crystals on photo-induced surface relief gratings of organic polysilane,” Thin Solid Films 518, 767–770 (2009).
[Crossref]

2006 (1)

J. J. Lee, C. H. Oh, G. J. Lee, Y. Lee, and S. H. Paek, “Effects of the surface relief profile on liquid crystal anchoring capabilities of laser-induced periodic surface structures,” J. Korean Phys. Soc. 49, 894–898 (2006).

2005 (3)

A. D. Kiselev, V. Chigrinov, and D. D. Huang, “Photoinduced ordering and anchoring properties of azo-dye films,” Phys. Rev. E 72, 061703 (2005).
[Crossref]

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

2003 (1)

T. Shioda, B. Wen, and C. Rosenblatt, “Step-wise freedericksz transition in a nematic liquid crystal,” J. Appl. Phys. 94, 7502–7504 (2003).
[Crossref]

2002 (2)

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Nanosurfaces of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology 13, 133–137 (2002).
[Crossref]

C.-T. Pan, H. Yang, S.-C. Shen, M.-C. Chou, and H.-P. Chou, “A low-temperature wafer bonding technique using patternable materials,” J. Micromech. Microeng. 12, 611–615 (2002).
[Crossref]

2001 (1)

B. Wen and C. Rosenblatt, “Planar nematic anchoring due to a periodic surface potential,” J. Appl. Phys. 89, 4747–4751 (2001).
[Crossref]

2000 (2)

M. O’Neill and S. M. Kelly, “Photoinduced surface alignment for liquid crystal displays,” J. Phys. D: Appl. Phys. 33, 67–84 (2000).
[Crossref]

V. Konovalov, A. Muravski, S. Y. Yakovenko, and J. Pelzl, “An accurate spectral method for measuring twist angle of twisted cells with rubbed and grooved surfaces,” SID Int. Sypm. Dig. Tec. 31, 620–623 (2000).
[Crossref]

1999 (1)

J. Stohr and M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. Relat. Phenom. 98, 189–207 (1999).
[Crossref]

1998 (2)

J.-H. Kim and C. Rosenblatt, “Rubbing strength dependence of surface interaction potential and surface-induced order above the nematic-isotropic transition,” J. Appl. Phys. 84, 6027–6033 (1998).
[Crossref]

I. Moreno, N. Bennis, J. Davis, and C. Ferreira, “Twist angle determination in liquid crystal displays by location of local adiabatic points,” Opt. Comm. 158, 231–238 (1998).
[Crossref]

1987 (1)

S. Faetti, “Azimuthal anchoring energy of a nematic liqud crystal at a grooved interface,” Phys. Rev. A 36, 408–410 (1987).
[Crossref] [PubMed]

1985 (1)

A. Sugimura and T. Kawamura, “Elastic anchoring energy related to orientational order parameter of nematic liquid crystal,” Jpn. J. Appl. Phys. 24, 245–248 (1985).
[Crossref]

1972 (1)

D. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).
[Crossref]

Belyaev, V. V.

A. K. Dadivanyan, D. N. Chausov, O. Noa, V. V. Belyaev, V. G. Chigrinov, and Y. M. Pashinina, “Influence of the order parameter on the anchoring energy of liquid crystals,” J. Exp. Theor. Phys. 115, 1100–1104 (2012).
[Crossref]

Bennis, N.

I. Moreno, N. Bennis, J. Davis, and C. Ferreira, “Twist angle determination in liquid crystal displays by location of local adiabatic points,” Opt. Comm. 158, 231–238 (1998).
[Crossref]

Berggren, K.

K. Yang, B. Cord, H. Duan, and K. Berggren, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Tech. B 27, 2622–2627 (2009).
[Crossref]

Berreman, D.

D. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).
[Crossref]

Blinov, L.

L. Blinov and V. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer Science, 1996).

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Chausov, D. N.

A. K. Dadivanyan, D. N. Chausov, O. Noa, V. V. Belyaev, V. G. Chigrinov, and Y. M. Pashinina, “Influence of the order parameter on the anchoring energy of liquid crystals,” J. Exp. Theor. Phys. 115, 1100–1104 (2012).
[Crossref]

Chigrinov, V.

S. Valyukh, I. Valyukh, and V. Chigrinov, “Liquid-crystal based light steering optical elements,” PLP 3, 88–90 (2011).

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

A. D. Kiselev, V. Chigrinov, and D. D. Huang, “Photoinduced ordering and anchoring properties of azo-dye films,” Phys. Rev. E 72, 061703 (2005).
[Crossref]

L. Blinov and V. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer Science, 1996).

Chigrinov, V. G.

A. K. Dadivanyan, D. N. Chausov, O. Noa, V. V. Belyaev, V. G. Chigrinov, and Y. M. Pashinina, “Influence of the order parameter on the anchoring energy of liquid crystals,” J. Exp. Theor. Phys. 115, 1100–1104 (2012).
[Crossref]

Chou, H.-P.

C.-T. Pan, H. Yang, S.-C. Shen, M.-C. Chou, and H.-P. Chou, “A low-temperature wafer bonding technique using patternable materials,” J. Micromech. Microeng. 12, 611–615 (2002).
[Crossref]

Chou, M.-C.

C.-T. Pan, H. Yang, S.-C. Shen, M.-C. Chou, and H.-P. Chou, “A low-temperature wafer bonding technique using patternable materials,” J. Micromech. Microeng. 12, 611–615 (2002).
[Crossref]

Cord, B.

K. Yang, B. Cord, H. Duan, and K. Berggren, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Tech. B 27, 2622–2627 (2009).
[Crossref]

Crawford, G. P.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Dadivanyan, A. K.

A. K. Dadivanyan, D. N. Chausov, O. Noa, V. V. Belyaev, V. G. Chigrinov, and Y. M. Pashinina, “Influence of the order parameter on the anchoring energy of liquid crystals,” J. Exp. Theor. Phys. 115, 1100–1104 (2012).
[Crossref]

Davis, J.

I. Moreno, N. Bennis, J. Davis, and C. Ferreira, “Twist angle determination in liquid crystal displays by location of local adiabatic points,” Opt. Comm. 158, 231–238 (1998).
[Crossref]

Duan, H.

K. Yang, B. Cord, H. Duan, and K. Berggren, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Tech. B 27, 2622–2627 (2009).
[Crossref]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Emoto, A.

A. Emoto, E. Uchida, and T. Fukuda, “Optical and physical applications of photocontrollable materials: Azobenzene-containing and liquid crystalline polymers,” Polymers 4, 150–186 (2012).
[Crossref]

Faetti, S.

S. Faetti, “Azimuthal anchoring energy of a nematic liqud crystal at a grooved interface,” Phys. Rev. A 36, 408–410 (1987).
[Crossref] [PubMed]

Ferreira, C.

I. Moreno, N. Bennis, J. Davis, and C. Ferreira, “Twist angle determination in liquid crystal displays by location of local adiabatic points,” Opt. Comm. 158, 231–238 (1998).
[Crossref]

Fukuda, T.

A. Emoto, E. Uchida, and T. Fukuda, “Optical and physical applications of photocontrollable materials: Azobenzene-containing and liquid crystalline polymers,” Polymers 4, 150–186 (2012).
[Crossref]

Huang, D. D.

A. D. Kiselev, V. Chigrinov, and D. D. Huang, “Photoinduced ordering and anchoring properties of azo-dye films,” Phys. Rev. E 72, 061703 (2005).
[Crossref]

Jaroszewicz, L.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Kawamura, T.

A. Sugimura and T. Kawamura, “Elastic anchoring energy related to orientational order parameter of nematic liquid crystal,” Jpn. J. Appl. Phys. 24, 245–248 (1985).
[Crossref]

Kedzierski, J.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Kelly, S. M.

M. O’Neill and S. M. Kelly, “Photoinduced surface alignment for liquid crystal displays,” J. Phys. D: Appl. Phys. 33, 67–84 (2000).
[Crossref]

Kim, J.-H.

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Nanosurfaces of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology 13, 133–137 (2002).
[Crossref]

J.-H. Kim and C. Rosenblatt, “Rubbing strength dependence of surface interaction potential and surface-induced order above the nematic-isotropic transition,” J. Appl. Phys. 84, 6027–6033 (1998).
[Crossref]

Kimball, B.

N. Tabiryan, S. Nersisyan, D. Steeves, and B. Kimball, “The promise of diffractive waveplates,” OPN 21, 40–45 (2010).

Kiselev, A. D.

A. D. Kiselev, V. Chigrinov, and D. D. Huang, “Photoinduced ordering and anchoring properties of azo-dye films,” Phys. Rev. E 72, 061703 (2005).
[Crossref]

Kojdecki, M.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Konovalov, V.

V. Konovalov, A. Muravski, S. Y. Yakovenko, and J. Pelzl, “An accurate spectral method for measuring twist angle of twisted cells with rubbed and grooved surfaces,” SID Int. Sypm. Dig. Tec. 31, 620–623 (2000).
[Crossref]

Kwok, H. S.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

Lee, G. J.

J. J. Lee, C. H. Oh, G. J. Lee, Y. Lee, and S. H. Paek, “Effects of the surface relief profile on liquid crystal anchoring capabilities of laser-induced periodic surface structures,” J. Korean Phys. Soc. 49, 894–898 (2006).

Lee, J. J.

J. J. Lee, C. H. Oh, G. J. Lee, Y. Lee, and S. H. Paek, “Effects of the surface relief profile on liquid crystal anchoring capabilities of laser-induced periodic surface structures,” J. Korean Phys. Soc. 49, 894–898 (2006).

Lee, Y.

J. J. Lee, C. H. Oh, G. J. Lee, Y. Lee, and S. H. Paek, “Effects of the surface relief profile on liquid crystal anchoring capabilities of laser-induced periodic surface structures,” J. Korean Phys. Soc. 49, 894–898 (2006).

Matsukawa, K.

T. Nanba, H. Naito, K. Matsukawa, and A. Sugimura, “Weak anchoring of nematic liquid crystals on photo-induced surface relief gratings of organic polysilane,” Thin Solid Films 518, 767–770 (2009).
[Crossref]

Meszczyk, E.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Morawiak, P.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Moreno, I.

I. Moreno, N. Bennis, J. Davis, and C. Ferreira, “Twist angle determination in liquid crystal displays by location of local adiabatic points,” Opt. Comm. 158, 231–238 (1998).
[Crossref]

Muccioli, L.

O. Roscioni, L. Muccioli, R. D. Valle, A. Pizzirusso, M. Ricci, and C. Zannoni, “Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness,” Langmuir 29, 8950–8958 (2013).
[Crossref] [PubMed]

Muravski, A.

V. Konovalov, A. Muravski, S. Y. Yakovenko, and J. Pelzl, “An accurate spectral method for measuring twist angle of twisted cells with rubbed and grooved surfaces,” SID Int. Sypm. Dig. Tec. 31, 620–623 (2000).
[Crossref]

Naito, H.

T. Nanba, H. Naito, K. Matsukawa, and A. Sugimura, “Weak anchoring of nematic liquid crystals on photo-induced surface relief gratings of organic polysilane,” Thin Solid Films 518, 767–770 (2009).
[Crossref]

Nanba, T.

T. Nanba, H. Naito, K. Matsukawa, and A. Sugimura, “Weak anchoring of nematic liquid crystals on photo-induced surface relief gratings of organic polysilane,” Thin Solid Films 518, 767–770 (2009).
[Crossref]

Nersisyan, S.

N. Tabiryan, S. Nersisyan, D. Steeves, and B. Kimball, “The promise of diffractive waveplates,” OPN 21, 40–45 (2010).

Noa, O.

A. K. Dadivanyan, D. N. Chausov, O. Noa, V. V. Belyaev, V. G. Chigrinov, and Y. M. Pashinina, “Influence of the order parameter on the anchoring energy of liquid crystals,” J. Exp. Theor. Phys. 115, 1100–1104 (2012).
[Crossref]

Nowinowski-Kruszelnicki, E.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

O’Neill, M.

M. O’Neill and S. M. Kelly, “Photoinduced surface alignment for liquid crystal displays,” J. Phys. D: Appl. Phys. 33, 67–84 (2000).
[Crossref]

Ogrodnik, K.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Oh, C. H.

J. J. Lee, C. H. Oh, G. J. Lee, Y. Lee, and S. H. Paek, “Effects of the surface relief profile on liquid crystal anchoring capabilities of laser-induced periodic surface structures,” J. Korean Phys. Soc. 49, 894–898 (2006).

Olifierczuk, M.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Paek, S. H.

J. J. Lee, C. H. Oh, G. J. Lee, Y. Lee, and S. H. Paek, “Effects of the surface relief profile on liquid crystal anchoring capabilities of laser-induced periodic surface structures,” J. Korean Phys. Soc. 49, 894–898 (2006).

Pan, C.-T.

C.-T. Pan, H. Yang, S.-C. Shen, M.-C. Chou, and H.-P. Chou, “A low-temperature wafer bonding technique using patternable materials,” J. Micromech. Microeng. 12, 611–615 (2002).
[Crossref]

Pashinina, Y. M.

A. K. Dadivanyan, D. N. Chausov, O. Noa, V. V. Belyaev, V. G. Chigrinov, and Y. M. Pashinina, “Influence of the order parameter on the anchoring energy of liquid crystals,” J. Exp. Theor. Phys. 115, 1100–1104 (2012).
[Crossref]

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Pelzl, J.

V. Konovalov, A. Muravski, S. Y. Yakovenko, and J. Pelzl, “An accurate spectral method for measuring twist angle of twisted cells with rubbed and grooved surfaces,” SID Int. Sypm. Dig. Tec. 31, 620–623 (2000).
[Crossref]

Perkowski, P.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Pieckek, W.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Pizzirusso, A.

O. Roscioni, L. Muccioli, R. D. Valle, A. Pizzirusso, M. Ricci, and C. Zannoni, “Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness,” Langmuir 29, 8950–8958 (2013).
[Crossref] [PubMed]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Raszewski, Z.

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Ricci, M.

O. Roscioni, L. Muccioli, R. D. Valle, A. Pizzirusso, M. Ricci, and C. Zannoni, “Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness,” Langmuir 29, 8950–8958 (2013).
[Crossref] [PubMed]

Roscioni, O.

O. Roscioni, L. Muccioli, R. D. Valle, A. Pizzirusso, M. Ricci, and C. Zannoni, “Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness,” Langmuir 29, 8950–8958 (2013).
[Crossref] [PubMed]

Rosenblatt, C.

T. Shioda, B. Wen, and C. Rosenblatt, “Step-wise freedericksz transition in a nematic liquid crystal,” J. Appl. Phys. 94, 7502–7504 (2003).
[Crossref]

B. Wen and C. Rosenblatt, “Planar nematic anchoring due to a periodic surface potential,” J. Appl. Phys. 89, 4747–4751 (2001).
[Crossref]

J.-H. Kim and C. Rosenblatt, “Rubbing strength dependence of surface interaction potential and surface-induced order above the nematic-isotropic transition,” J. Appl. Phys. 84, 6027–6033 (1998).
[Crossref]

Samant, M. G.

J. Stohr and M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. Relat. Phenom. 98, 189–207 (1999).
[Crossref]

Shen, S.-C.

C.-T. Pan, H. Yang, S.-C. Shen, M.-C. Chou, and H.-P. Chou, “A low-temperature wafer bonding technique using patternable materials,” J. Micromech. Microeng. 12, 611–615 (2002).
[Crossref]

Shioda, T.

T. Shioda, B. Wen, and C. Rosenblatt, “Step-wise freedericksz transition in a nematic liquid crystal,” J. Appl. Phys. 94, 7502–7504 (2003).
[Crossref]

Steeves, D.

N. Tabiryan, S. Nersisyan, D. Steeves, and B. Kimball, “The promise of diffractive waveplates,” OPN 21, 40–45 (2010).

Stohr, J.

J. Stohr and M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. Relat. Phenom. 98, 189–207 (1999).
[Crossref]

Sugimura, A.

T. Nanba, H. Naito, K. Matsukawa, and A. Sugimura, “Weak anchoring of nematic liquid crystals on photo-induced surface relief gratings of organic polysilane,” Thin Solid Films 518, 767–770 (2009).
[Crossref]

A. Sugimura and T. Kawamura, “Elastic anchoring energy related to orientational order parameter of nematic liquid crystal,” Jpn. J. Appl. Phys. 24, 245–248 (1985).
[Crossref]

Tabiryan, N.

N. Tabiryan, S. Nersisyan, D. Steeves, and B. Kimball, “The promise of diffractive waveplates,” OPN 21, 40–45 (2010).

Takada, H.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

Takatsu, H.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

Uchida, E.

A. Emoto, E. Uchida, and T. Fukuda, “Optical and physical applications of photocontrollable materials: Azobenzene-containing and liquid crystalline polymers,” Polymers 4, 150–186 (2012).
[Crossref]

Valle, R. D.

O. Roscioni, L. Muccioli, R. D. Valle, A. Pizzirusso, M. Ricci, and C. Zannoni, “Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness,” Langmuir 29, 8950–8958 (2013).
[Crossref] [PubMed]

Valyukh, I.

S. Valyukh, I. Valyukh, and V. Chigrinov, “Liquid-crystal based light steering optical elements,” PLP 3, 88–90 (2011).

Valyukh, S.

S. Valyukh, I. Valyukh, and V. Chigrinov, “Liquid-crystal based light steering optical elements,” PLP 3, 88–90 (2011).

Wen, B.

T. Shioda, B. Wen, and C. Rosenblatt, “Step-wise freedericksz transition in a nematic liquid crystal,” J. Appl. Phys. 94, 7502–7504 (2003).
[Crossref]

B. Wen and C. Rosenblatt, “Planar nematic anchoring due to a periodic surface potential,” J. Appl. Phys. 89, 4747–4751 (2001).
[Crossref]

Yakovenko, S. Y.

V. Konovalov, A. Muravski, S. Y. Yakovenko, and J. Pelzl, “An accurate spectral method for measuring twist angle of twisted cells with rubbed and grooved surfaces,” SID Int. Sypm. Dig. Tec. 31, 620–623 (2000).
[Crossref]

Yamamoto, J.

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Nanosurfaces of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology 13, 133–137 (2002).
[Crossref]

Yang, H.

C.-T. Pan, H. Yang, S.-C. Shen, M.-C. Chou, and H.-P. Chou, “A low-temperature wafer bonding technique using patternable materials,” J. Micromech. Microeng. 12, 611–615 (2002).
[Crossref]

Yang, K.

K. Yang, B. Cord, H. Duan, and K. Berggren, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Tech. B 27, 2622–2627 (2009).
[Crossref]

Yokoyama, H.

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Nanosurfaces of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology 13, 133–137 (2002).
[Crossref]

Yoneya, M.

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Nanosurfaces of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology 13, 133–137 (2002).
[Crossref]

Zannoni, C.

O. Roscioni, L. Muccioli, R. D. Valle, A. Pizzirusso, M. Ricci, and C. Zannoni, “Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness,” Langmuir 29, 8950–8958 (2013).
[Crossref] [PubMed]

Zheng, W.

W. Zheng, Surface Wetting Characteristics of Rubbed Poyimide Thin Films (InTech, 2010).

J. Appl. Phys. (4)

T. Shioda, B. Wen, and C. Rosenblatt, “Step-wise freedericksz transition in a nematic liquid crystal,” J. Appl. Phys. 94, 7502–7504 (2003).
[Crossref]

B. Wen and C. Rosenblatt, “Planar nematic anchoring due to a periodic surface potential,” J. Appl. Phys. 89, 4747–4751 (2001).
[Crossref]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

J.-H. Kim and C. Rosenblatt, “Rubbing strength dependence of surface interaction potential and surface-induced order above the nematic-isotropic transition,” J. Appl. Phys. 84, 6027–6033 (1998).
[Crossref]

J. Electron. Spectrosc. Relat. Phenom. (1)

J. Stohr and M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. Relat. Phenom. 98, 189–207 (1999).
[Crossref]

J. Exp. Theor. Phys. (1)

A. K. Dadivanyan, D. N. Chausov, O. Noa, V. V. Belyaev, V. G. Chigrinov, and Y. M. Pashinina, “Influence of the order parameter on the anchoring energy of liquid crystals,” J. Exp. Theor. Phys. 115, 1100–1104 (2012).
[Crossref]

J. Korean Phys. Soc. (1)

J. J. Lee, C. H. Oh, G. J. Lee, Y. Lee, and S. H. Paek, “Effects of the surface relief profile on liquid crystal anchoring capabilities of laser-induced periodic surface structures,” J. Korean Phys. Soc. 49, 894–898 (2006).

J. Micromech. Microeng. (1)

C.-T. Pan, H. Yang, S.-C. Shen, M.-C. Chou, and H.-P. Chou, “A low-temperature wafer bonding technique using patternable materials,” J. Micromech. Microeng. 12, 611–615 (2002).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. O’Neill and S. M. Kelly, “Photoinduced surface alignment for liquid crystal displays,” J. Phys. D: Appl. Phys. 33, 67–84 (2000).
[Crossref]

J. Vac. Sci. Tech. B (1)

K. Yang, B. Cord, H. Duan, and K. Berggren, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Tech. B 27, 2622–2627 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Sugimura and T. Kawamura, “Elastic anchoring energy related to orientational order parameter of nematic liquid crystal,” Jpn. J. Appl. Phys. 24, 245–248 (1985).
[Crossref]

Langmuir (1)

O. Roscioni, L. Muccioli, R. D. Valle, A. Pizzirusso, M. Ricci, and C. Zannoni, “Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness,” Langmuir 29, 8950–8958 (2013).
[Crossref] [PubMed]

Liq. Cryst. Today (1)

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

Nanotechnology (1)

J.-H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Nanosurfaces of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology 13, 133–137 (2002).
[Crossref]

OPN (1)

N. Tabiryan, S. Nersisyan, D. Steeves, and B. Kimball, “The promise of diffractive waveplates,” OPN 21, 40–45 (2010).

Opt. Comm. (1)

I. Moreno, N. Bennis, J. Davis, and C. Ferreira, “Twist angle determination in liquid crystal displays by location of local adiabatic points,” Opt. Comm. 158, 231–238 (1998).
[Crossref]

Opto-Electron. Rev. (1)

E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, M. Kojdecki, W. Pieckek, P. Perkowski, M. Olifierczuk, E. Meszczyk, K. Ogrodnik, and P. Morawiak, “Measurement of elastic constants of nematic liquid crystals with use of hybrid in-plane-switched cell,” Opto-Electron. Rev. 20, 255–259 (2012).
[Crossref]

Phys. Rev. A (1)

S. Faetti, “Azimuthal anchoring energy of a nematic liqud crystal at a grooved interface,” Phys. Rev. A 36, 408–410 (1987).
[Crossref] [PubMed]

Phys. Rev. E (1)

A. D. Kiselev, V. Chigrinov, and D. D. Huang, “Photoinduced ordering and anchoring properties of azo-dye films,” Phys. Rev. E 72, 061703 (2005).
[Crossref]

Phys. Rev. Lett. (1)

D. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).
[Crossref]

PLP (1)

S. Valyukh, I. Valyukh, and V. Chigrinov, “Liquid-crystal based light steering optical elements,” PLP 3, 88–90 (2011).

Polymers (1)

A. Emoto, E. Uchida, and T. Fukuda, “Optical and physical applications of photocontrollable materials: Azobenzene-containing and liquid crystalline polymers,” Polymers 4, 150–186 (2012).
[Crossref]

SID Int. Sypm. Dig. Tec. (1)

V. Konovalov, A. Muravski, S. Y. Yakovenko, and J. Pelzl, “An accurate spectral method for measuring twist angle of twisted cells with rubbed and grooved surfaces,” SID Int. Sypm. Dig. Tec. 31, 620–623 (2000).
[Crossref]

Thin Solid Films (1)

T. Nanba, H. Naito, K. Matsukawa, and A. Sugimura, “Weak anchoring of nematic liquid crystals on photo-induced surface relief gratings of organic polysilane,” Thin Solid Films 518, 767–770 (2009).
[Crossref]

Other (4)

L. Blinov and V. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer Science, 1996).

W. Zheng, Surface Wetting Characteristics of Rubbed Poyimide Thin Films (InTech, 2010).

U. http://www.microchem.com/ProdGrid.htm (2014).

U. http://transene.com/cr/ (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1:
Fig. 1: LC molecules deposited onto ridges and aligning parallel (a) and perpendicular (b) to the ridges. In (a), the molecules can all have uniform alignment while remaining tangent to the substrate; however, in (b) the LC molecules must constantly change their orientation.
Fig. 2:
Fig. 2: Liquid crystal anchoring ridges written in hydrogen silsesquioxane patterned on fused silica substrates, using electron beam lithography. The pitch is 200 nm and the height of the ridges is 19 nm.
Fig. 3:
Fig. 3: Representation of a twisted nematic liquid crystal cell. The LC molecules twist between two substrates with perpendicular anchoring layers, which are represented by the red lines.
Fig. 4:
Fig. 4: Analyzer angle required to achieve the maximum transmission versus the polarizer angle, on and off the local adiabatic point.
Fig. 5:
Fig. 5: Anchoring energies obtained with various groove depths and pitches, superimposed on the data is the anchoring energy predicted by Eq. (2) with Wp = 7.1 × 10−5J/m2
Fig. 6:
Fig. 6: The anchoring energy is plotted versus the square of the groove depth. Each period is shown with the line for which Wp was optimized.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

W a = 2 π 3 K A 2 Λ 3
W a = 2 π 3 K A 2 Λ 3 [ 1 1 + π K Λ W p ]
W a = 2 K 22 θ d sin ( θ d θ )
γ = θ 2 + β 2 = m π

Metrics