Abstract

We present a non-z-scanning multi-molecule tracking system with nano-resolution in all three dimensions and extended depth of field (DOF), which based on distorted grating (DG) and double-helix point spread function (DH-PSF) combination microscopy (DDCM). The critical component in DDCM is a custom designed composite phase mask (PM) combining the functions of DG and DH-PSF. The localization precision and the effective DOF of the home-built DDCM system based on the designed PM were tested. Our experimental results show that the three-dimensional (3D) localization precision for the three diffraction orders of the grating are σ-1st(x, y, z) = (6.5 nm, 9.2nm, 23.4 nm), σ0th(x, y, z) = (3.7 nm, 2.8nm, 10.3 nm), and σ+1st(x, y, z) = (5.8 nm, 6.9 nm, 18.4 nm), respectively. Furthermore, the total effective DOF of the DDCM system is extended to 14 μm. Tracking experiment demonstrated that beads separated over 12 μm along the axial direction at some instants can be localized and tracked successfully.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Approach to multiparticle parallel tracking in thick samples with three-dimensional nanoresolution

Danni Chen, Bin Yu, Heng Li, Yingdong Huo, Bo Cao, Gaixia Xu, and Hanben Niu
Opt. Lett. 38(19) 3712-3715 (2013)

Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions

Donald B. Conkey, Rahul P. Trivedi, Sri Rama Prasanna Pavani, Ivan I. Smalyukh, and Rafael Piestun
Opt. Express 19(5) 3835-3842 (2011)

Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy

Alex von Diezmann, Maurice Y. Lee, Matthew D. Lew, and W. E. Moerner
Optica 2(11) 985-993 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Dupont and D. C. Lamb, “Nanoscale three-dimensional single particle tracking,” Nanoscale 3(11), 4532–4541 (2011).
    [Crossref] [PubMed]
  2. N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
    [Crossref] [PubMed]
  3. S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian, G. P. Wang, and D. W. Pang, “Fast and high-accuracy localization for three-dimensional single-particle tracking,” Sci. Rep. 3, 2462 (2013).
    [PubMed]
  4. H. Jin, D. A. Heller, and M. S. Strano, “Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells,” Nano Lett. 8(6), 1577–1585 (2008).
    [Crossref] [PubMed]
  5. Y. Gu, X. Di, W. Sun, G. Wang, and N. Fang, “Three-dimensional super-localization and tracking of single gold nanoparticles in cells,” Anal. Chem. 84(9), 4111–4117 (2012).
    [Crossref] [PubMed]
  6. G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
    [Crossref]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  8. X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
    [Crossref] [PubMed]
  9. S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18(6), 1419–1429 (2012).
    [Crossref] [PubMed]
  10. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  11. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref] [PubMed]
  12. S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, “High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells,” Biophys. J. 95(12), 6025–6043 (2008).
    [Crossref] [PubMed]
  13. S. Ram, P. Prabhat, E. S. Ward, and R. J. Ober, “Improved single particle localization accuracy with dual objective multifocal plane microscopy,” Opt. Express 17(8), 6881–6898 (2009).
    [Crossref] [PubMed]
  14. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
    [Crossref] [PubMed]
  15. J. H. Spille, T. Kaminski, H. P. Königshoven, and U. Kubitscheck, “Dynamic three-dimensional tracking of single fluorescent nanoparticles deep inside living tissue,” Opt. Express 20(18), 19697–19707 (2012).
    [Crossref] [PubMed]
  16. M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
    [Crossref] [PubMed]
  17. S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
    [Crossref] [PubMed]
  18. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
    [Crossref] [PubMed]
  19. M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
    [Crossref] [PubMed]
  20. S. Ram, D. Kim, R. J. Ober, and E. S. Ward, “3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers,” Biophys. J. 103(7), 1594–1603 (2012).
    [Crossref] [PubMed]
  21. P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183(1-4), 29–36 (2000).
    [Crossref]
  22. P. A. Dalgarno, H. I. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18(2), 877–884 (2010).
    [Crossref] [PubMed]
  23. G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2(11), 3010–3020 (2011).
    [Crossref] [PubMed]
  24. D. Chen, B. Yu, H. Li, Y. Huo, B. Cao, G. Xu, and H. Niu, “Approach to multiparticle parallel tracking in thick samples with three-dimensional nanoresolution,” Opt. Lett. 38(19), 3712–3715 (2013).
    [Crossref] [PubMed]
  25. C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
    [Crossref] [PubMed]
  26. C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, “Multicolor conjugated polymer dots for biological fluorescence imaging,” ACS Nano 2(11), 2415–2423 (2008).
    [Crossref] [PubMed]

2013 (2)

S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian, G. P. Wang, and D. W. Pang, “Fast and high-accuracy localization for three-dimensional single-particle tracking,” Sci. Rep. 3, 2462 (2013).
[PubMed]

D. Chen, B. Yu, H. Li, Y. Huo, B. Cao, G. Xu, and H. Niu, “Approach to multiparticle parallel tracking in thick samples with three-dimensional nanoresolution,” Opt. Lett. 38(19), 3712–3715 (2013).
[Crossref] [PubMed]

2012 (4)

S. Ram, D. Kim, R. J. Ober, and E. S. Ward, “3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers,” Biophys. J. 103(7), 1594–1603 (2012).
[Crossref] [PubMed]

Y. Gu, X. Di, W. Sun, G. Wang, and N. Fang, “Three-dimensional super-localization and tracking of single gold nanoparticles in cells,” Anal. Chem. 84(9), 4111–4117 (2012).
[Crossref] [PubMed]

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18(6), 1419–1429 (2012).
[Crossref] [PubMed]

J. H. Spille, T. Kaminski, H. P. Königshoven, and U. Kubitscheck, “Dynamic three-dimensional tracking of single fluorescent nanoparticles deep inside living tissue,” Opt. Express 20(18), 19697–19707 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
[Crossref] [PubMed]

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

P. A. Dalgarno, H. I. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18(2), 877–884 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (5)

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, “High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells,” Biophys. J. 95(12), 6025–6043 (2008).
[Crossref] [PubMed]

S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
[Crossref] [PubMed]

H. Jin, D. A. Heller, and M. S. Strano, “Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells,” Nano Lett. 8(6), 1577–1585 (2008).
[Crossref] [PubMed]

C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, “Multicolor conjugated polymer dots for biological fluorescence imaging,” ACS Nano 2(11), 2415–2423 (2008).
[Crossref] [PubMed]

2007 (1)

G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
[Crossref]

2006 (5)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[Crossref] [PubMed]

N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

2000 (1)

P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183(1-4), 29–36 (2000).
[Crossref]

Arhel, N.

N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
[Crossref] [PubMed]

Badieirostami, M.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Beane, G. L.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bewersdorf, J.

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Blanchard, P. M.

P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183(1-4), 29–36 (2000).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Brown, P. O.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

Bull, B.

C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, “Multicolor conjugated polymer dots for biological fluorescence imaging,” ACS Nano 2(11), 2415–2423 (2008).
[Crossref] [PubMed]

Burnham, D. R.

C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
[Crossref] [PubMed]

Cao, B.

Casolari, J. M.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

Chao, J.

S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, “High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells,” Biophys. J. 95(12), 6025–6043 (2008).
[Crossref] [PubMed]

Charneau, P.

N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
[Crossref] [PubMed]

Chen, D.

Chiu, D. T.

C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
[Crossref] [PubMed]

Christensen, K.

C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, “Multicolor conjugated polymer dots for biological fluorescence imaging,” ACS Nano 2(11), 2415–2423 (2008).
[Crossref] [PubMed]

Dalgarno, H. I.

Dalgarno, P. A.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Di, X.

Y. Gu, X. Di, W. Sun, G. Wang, and N. Fang, “Three-dimensional super-localization and tracking of single gold nanoparticles in cells,” Anal. Chem. 84(9), 4111–4117 (2012).
[Crossref] [PubMed]

Dupont, A.

A. Dupont and D. C. Lamb, “Nanoscale three-dimensional single particle tracking,” Nanoscale 3(11), 4532–4541 (2011).
[Crossref] [PubMed]

Fang, N.

Y. Gu, X. Di, W. Sun, G. Wang, and N. Fang, “Three-dimensional super-localization and tracking of single gold nanoparticles in cells,” Anal. Chem. 84(9), 4111–4117 (2012).
[Crossref] [PubMed]

Fiedler, C.

Genovesio, A.

N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
[Crossref] [PubMed]

Girirajan, T. P.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Goodwin, P. M.

G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
[Crossref]

Greenaway, A. H.

Grover, G.

Gu, Y.

Y. Gu, X. Di, W. Sun, G. Wang, and N. Fang, “Three-dimensional super-localization and tracking of single gold nanoparticles in cells,” Anal. Chem. 84(9), 4111–4117 (2012).
[Crossref] [PubMed]

Heller, D. A.

H. Jin, D. A. Heller, and M. S. Strano, “Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells,” Nano Lett. 8(6), 1577–1585 (2008).
[Crossref] [PubMed]

Henriques, R.

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18(6), 1419–1429 (2012).
[Crossref] [PubMed]

Herbert, S.

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18(6), 1419–1429 (2012).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hess, S. T.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Huo, Y.

Jin, H.

H. Jin, D. A. Heller, and M. S. Strano, “Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells,” Nano Lett. 8(6), 1577–1585 (2008).
[Crossref] [PubMed]

Juette, M. F.

Kaminski, T.

Kim, D.

S. Ram, D. Kim, R. J. Ober, and E. S. Ward, “3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers,” Biophys. J. 103(7), 1594–1603 (2012).
[Crossref] [PubMed]

Kim, K. A.

N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
[Crossref] [PubMed]

Königshoven, H. P.

Kubitscheck, U.

Lamb, D. C.

A. Dupont and D. C. Lamb, “Nanoscale three-dimensional single particle tracking,” Nanoscale 3(11), 4532–4541 (2011).
[Crossref] [PubMed]

Lambert, R.

Lessard, G. A.

G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
[Crossref]

Li, H.

Li, J.

S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian, G. P. Wang, and D. W. Pang, “Fast and high-accuracy localization for three-dimensional single-particle tracking,” Sci. Rep. 3, 2462 (2013).
[PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Liu, S. L.

S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian, G. P. Wang, and D. W. Pang, “Fast and high-accuracy localization for three-dimensional single-particle tracking,” Sci. Rep. 3, 2462 (2013).
[PubMed]

Logan, D. C.

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Mason, M. D.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

McNeill, J.

C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, “Multicolor conjugated polymer dots for biological fluorescence imaging,” ACS Nano 2(11), 2415–2423 (2008).
[Crossref] [PubMed]

McNeill, J. D.

C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
[Crossref] [PubMed]

Miko, S.

N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
[Crossref] [PubMed]

Mlodzianoski, M. J.

Moerner, W. E.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Niu, H.

Ober, R. J.

S. Ram, D. Kim, R. J. Ober, and E. S. Ward, “3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers,” Biophys. J. 103(7), 1594–1603 (2012).
[Crossref] [PubMed]

S. Ram, P. Prabhat, E. S. Ward, and R. J. Ober, “Improved single particle localization accuracy with dual objective multifocal plane microscopy,” Opt. Express 17(8), 6881–6898 (2009).
[Crossref] [PubMed]

S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, “High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells,” Biophys. J. 95(12), 6025–6043 (2008).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Olivo-Marin, J. C.

N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
[Crossref] [PubMed]

Pang, D. W.

S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian, G. P. Wang, and D. W. Pang, “Fast and high-accuracy localization for three-dimensional single-particle tracking,” Sci. Rep. 3, 2462 (2013).
[PubMed]

Paterson, L.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Pavani, S. R. P.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
[Crossref] [PubMed]

Perret, E.

N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
[Crossref] [PubMed]

Piestun, R.

G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2(11), 3010–3020 (2011).
[Crossref] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
[Crossref] [PubMed]

Prabhat, P.

S. Ram, P. Prabhat, E. S. Ward, and R. J. Ober, “Improved single particle localization accuracy with dual objective multifocal plane microscopy,” Opt. Express 17(8), 6881–6898 (2009).
[Crossref] [PubMed]

S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, “High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells,” Biophys. J. 95(12), 6025–6043 (2008).
[Crossref] [PubMed]

Putoud, A.

Quirin, S.

Ram, S.

S. Ram, D. Kim, R. J. Ober, and E. S. Ward, “3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers,” Biophys. J. 103(7), 1594–1603 (2012).
[Crossref] [PubMed]

S. Ram, P. Prabhat, E. S. Ward, and R. J. Ober, “Improved single particle localization accuracy with dual objective multifocal plane microscopy,” Opt. Express 17(8), 6881–6898 (2009).
[Crossref] [PubMed]

S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, “High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells,” Biophys. J. 95(12), 6025–6043 (2008).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Schiro, P. G.

C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
[Crossref] [PubMed]

Schneider, T.

C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
[Crossref] [PubMed]

Shorte, S.

N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
[Crossref] [PubMed]

Soares, H.

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18(6), 1419–1429 (2012).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Spille, J. H.

Strano, M. S.

H. Jin, D. A. Heller, and M. S. Strano, “Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells,” Nano Lett. 8(6), 1577–1585 (2008).
[Crossref] [PubMed]

Sun, W.

Y. Gu, X. Di, W. Sun, G. Wang, and N. Fang, “Three-dimensional super-localization and tracking of single gold nanoparticles in cells,” Anal. Chem. 84(9), 4111–4117 (2012).
[Crossref] [PubMed]

Szymanski, C.

C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, “Multicolor conjugated polymer dots for biological fluorescence imaging,” ACS Nano 2(11), 2415–2423 (2008).
[Crossref] [PubMed]

Thompson, M. A.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Tian, Z. Q.

S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian, G. P. Wang, and D. W. Pang, “Fast and high-accuracy localization for three-dimensional single-particle tracking,” Sci. Rep. 3, 2462 (2013).
[PubMed]

Towers, D. P.

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Wang, G.

Y. Gu, X. Di, W. Sun, G. Wang, and N. Fang, “Three-dimensional super-localization and tracking of single gold nanoparticles in cells,” Anal. Chem. 84(9), 4111–4117 (2012).
[Crossref] [PubMed]

Wang, G. P.

S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian, G. P. Wang, and D. W. Pang, “Fast and high-accuracy localization for three-dimensional single-particle tracking,” Sci. Rep. 3, 2462 (2013).
[PubMed]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Wang, Z. G.

S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian, G. P. Wang, and D. W. Pang, “Fast and high-accuracy localization for three-dimensional single-particle tracking,” Sci. Rep. 3, 2462 (2013).
[PubMed]

Warburton, R. J.

Ward, E. S.

S. Ram, D. Kim, R. J. Ober, and E. S. Ward, “3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers,” Biophys. J. 103(7), 1594–1603 (2012).
[Crossref] [PubMed]

S. Ram, P. Prabhat, E. S. Ward, and R. J. Ober, “Improved single particle localization accuracy with dual objective multifocal plane microscopy,” Opt. Express 17(8), 6881–6898 (2009).
[Crossref] [PubMed]

S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, “High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells,” Biophys. J. 95(12), 6025–6043 (2008).
[Crossref] [PubMed]

Werner, J. H.

G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
[Crossref]

Wu, C.

C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
[Crossref] [PubMed]

C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, “Multicolor conjugated polymer dots for biological fluorescence imaging,” ACS Nano 2(11), 2415–2423 (2008).
[Crossref] [PubMed]

Xie, X. S.

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[Crossref] [PubMed]

Xu, G.

Yang, W. Y.

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[Crossref] [PubMed]

Yu, B.

Yu, J.

C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
[Crossref] [PubMed]

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[Crossref] [PubMed]

Zeigler, M.

C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
[Crossref] [PubMed]

Zhang, Z. L.

S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian, G. P. Wang, and D. W. Pang, “Fast and high-accuracy localization for three-dimensional single-particle tracking,” Sci. Rep. 3, 2462 (2013).
[PubMed]

Zhuang, X.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Zimmer, C.

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18(6), 1419–1429 (2012).
[Crossref] [PubMed]

ACS Nano (1)

C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, “Multicolor conjugated polymer dots for biological fluorescence imaging,” ACS Nano 2(11), 2415–2423 (2008).
[Crossref] [PubMed]

Anal. Chem. (1)

Y. Gu, X. Di, W. Sun, G. Wang, and N. Fang, “Three-dimensional super-localization and tracking of single gold nanoparticles in cells,” Anal. Chem. 84(9), 4111–4117 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. A. Lessard, P. M. Goodwin, and J. H. Werner, “Three-dimensional tracking of individual quantum dots,” Appl. Phys. Lett. 91(22), 224106 (2007).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (3)

S. Ram, D. Kim, R. J. Ober, and E. S. Ward, “3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers,” Biophys. J. 103(7), 1594–1603 (2012).
[Crossref] [PubMed]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, “High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells,” Biophys. J. 95(12), 6025–6043 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, and D. T. Chiu, “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” J. Am. Chem. Soc. 132(43), 15410–15417 (2010).
[Crossref] [PubMed]

Microsc. Microanal. (1)

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18(6), 1419–1429 (2012).
[Crossref] [PubMed]

Nano Lett. (1)

H. Jin, D. A. Heller, and M. S. Strano, “Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells,” Nano Lett. 8(6), 1577–1585 (2008).
[Crossref] [PubMed]

Nanoscale (1)

A. Dupont and D. C. Lamb, “Nanoscale three-dimensional single particle tracking,” Nanoscale 3(11), 4532–4541 (2011).
[Crossref] [PubMed]

Nat. Methods (2)

N. Arhel, A. Genovesio, K. A. Kim, S. Miko, E. Perret, J. C. Olivo-Marin, S. Shorte, and P. Charneau, “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nat. Methods 3(10), 817–824 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183(1-4), 29–36 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (2)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian, G. P. Wang, and D. W. Pang, “Fast and high-accuracy localization for three-dimensional single-particle tracking,” Sci. Rep. 3, 2462 (2013).
[PubMed]

Science (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[Crossref] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Supplementary Material (2)

» Media 1: AVI (2893 KB)     
» Media 2: AVI (1099 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Design of composite the PM. (a), (b), and (c) The image shows the simulation result of composite PM [24]. (d)The actual designed PM using micro-fabrication photoetching method.
Fig. 2
Fig. 2 Schematic of the DDCM. The laser is expanded and collimated after an excitation filter (EF), and then sent to excite the fluorescent beads with an objective (Obj) combined with a tube lens(TL1) whose focal length is f = 180 mm. Fluorescence signal is collected by the same objective and split with laser beam by a dichromatic mirror(DM). A 4f relay system consisting of two achromatic lenses (F1 and F2, f = 200 mm) and a composite PM mounted at the Fourier plane is inserted before the detector (iXon 885, Andor).
Fig. 3
Fig. 3 Calibration of the DDCM system by imaging a fluorescent bead. The movement of bead is controlled by a nano piezoelectric stage. The bead was moved in 100 nm steps along z axis and imaged. Three representative images of the bead are shown in (a), (b), and (c), that are three images of the bead in the −1st, 0th and + 1st diffraction order section which corresponded to −6 um, −1 um and 6 um along with the z axial position. (d) Calibration curves for the 0th and the ± 1st diffraction orders.
Fig. 4
Fig. 4 Estimation of the localization precision in x, y (upper) and z (lower) for the −1st, 0th and the + 1st diffraction orders.
Fig. 5
Fig. 5 Localization precision as function of the number of collected photons for the −1st(a), the 0th(b) and the + 1st(c) diffraction order.
Fig. 6
Fig. 6 Three- dimensional tracking of three beads simultaneously. (a) One image from the movie (media 1) of the dynamic imaging of beads. (b) Trajectories viewed in 3D (top) and projected on x-z plane (bottom left) and x-y plane (bottom right), respectively.
Fig. 7
Fig. 7 MSDs for 100nm beads in different water-glycerol mixtures with a linear fit to the slope of the data. The MSD shown in green line were derived from the data in Fig. 6.
Fig. 8
Fig. 8 Tracking fluorescent beads in a live cell in 3D. (a) White light image of the Raw-264.7 cell. (b) Fluorescence image of the emitter (media 2). (c) Three-dimensional trajectory of the bead from the red smaller boxed region in (b), showing a variety of diffusive and linear transport characteristics. (d) The trajectory from the red smaller boxed region in (c) when viewed at higher magnification.

Metrics