Abstract

A new form of double pulse composed of a nanosecond laser and a millisecond laser is proposed for laser machining transparent materials. To evaluate its advantages and disadvantages, experimental investigations are carried out and the corresponding results are compared with those of single millisecond laser. The mechanism is discussed from two aspects: material defects and effects of modifications induced by nanosecond laser on thermal stress field during millisecond laser irradiation. It is shown that the modifications of the sample generated by nanosecond laser improves the processing efficiency of subsequent millisecond laser, while limits the eventual size of modified region.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface damage induced by a combined millisecond and nanosecond laser

Xueming Lv, Yunxiang Pan, Zhichao Jia, Zewen Li, and Xiaowu Ni
Appl. Opt. 56(17) 5060-5067 (2017)

Experimental study of the morphological evolution of the millisecond–nanosecond combined-pulse laser ablation of aluminum alloy

Bo-Shi Yuan, Di Wang, Yuan Dong, Wei Zhang, and Guang-Yong Jin
Appl. Opt. 57(20) 5743-5748 (2018)

Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses

Dagmar Esser, Saeid Rezaei, Jianzhao Li, Peter R. Herman, and Jens Gottmann
Opt. Express 19(25) 25632-25642 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  2. M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
    [Crossref]
  3. Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation,” Int. J. Heat Mass Transfer 49(7-8), 1493–1500 (2006).
    [Crossref]
  4. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
    [Crossref] [PubMed]
  5. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41(18), 3628–3633 (2002).
    [Crossref] [PubMed]
  6. L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10(25), 1465–1474 (2002).
    [Crossref] [PubMed]
  7. J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41(16), 3156–3166 (2002).
    [Crossref] [PubMed]
  8. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
    [Crossref] [PubMed]
  9. G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses,” Opt. Express 15(8), 4557–4576 (2007).
    [Crossref] [PubMed]
  10. N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the ability of optical glass to withstand 10-msec laser pulses,” Sov. J. Quantum Electron. 7(2), 264–266 (1977).
    [Crossref]
  11. N. E. Kask, L. S. Kornienko, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Effects of millisecond laser pulses on radiation-colored K-8 glass,” Sov. J. Quantum Electron. 6(7), 850–853 (1976).
    [Crossref]
  12. B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49(29), 5537–5544 (2010).
    [Crossref] [PubMed]
  13. B. Wang, G. Dai, H. Zhang, X. Ni, Z. Shen, and J. Lu, “Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser,” Appl. Surf. Sci. 257(23), 9977–9981 (2011).
    [Crossref]
  14. B. Wang, H. Zhang, Y. Qin, X. Wang, X. Ni, Z. Shen, and J. Lu, “Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers,” Appl. Opt. 50(20), 3435–3441 (2011).
    [Crossref] [PubMed]
  15. Y. Pan, B. Wang, Z. Shen, J. Lu, and X. Ni, “Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser,” Opt. Eng. 52(4), 044302 (2013).
    [Crossref]
  16. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
    [Crossref]
  17. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009).
    [Crossref] [PubMed]
  18. J. A. Fox, “A method for improving continuous wave laser penetration of metal targets,” Appl. Phys. Lett. 26(12), 682–684 (1975).
    [Crossref]
  19. C. Lehane and H. S. Kwok, “Enhanced drilling using a dual-pulse Nd:YAG laser,” Appl. Phys., A Mater. Sci. Process. 73(1), 45–48 (2001).
    [Crossref]
  20. A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
    [Crossref]
  21. X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
    [Crossref]
  22. A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys., A Mater. Sci. Process. 71(6), 601–608 (2000).
    [Crossref]
  23. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
    [Crossref] [PubMed]
  24. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14(3), 650–660 (1997).
    [Crossref]
  25. ISO 21254–2, “Lasers and laser-related equipment-Test methods for laser-induced damage threshold - Part 2: Threshold determination,” (2011).
  26. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
    [Crossref]
  27. A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
    [Crossref]
  28. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
    [Crossref]
  29. C. G. Morgan, “Laser-induced electrical breakdown of gases,” Electrical breakdown of gases. New York: Wiley, 717 (1978).
  30. M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
    [Crossref]
  31. R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41(10), 4023–4037 (1970).
    [Crossref]
  32. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [Crossref] [PubMed]
  33. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
    [Crossref] [PubMed]
  34. M. von Allmen, “Laser drilling velocity in metals,” J. Appl. Phys. 47(12), 5460–5463 (1976).
    [Crossref]
  35. C. L. Chan and J. Mazumder, “One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction,” J. Appl. Phys. 62(11), 4579–4586 (1987).
    [Crossref]
  36. P. Solana, P. Kapadia, J. Dowden, W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “Time dependent ablation and liquid ejection processes during the laser drilling of metals,” Opt. Commun. 191(1-2), 97–112 (2001).
    [Crossref]
  37. A. M. Bonch-Bruevich, Y. A. Imas, V. L. Komolov, V. S. Salyadinov, and V. N. Smirnov, “Heating of optical glass irradiated by a quasicontinuous neodymium-glass laser,” Sov. Phys. Tech. Phys. 20(5), 1117–1121 (1975).
  38. P. DeMange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “A multi-dimensional investigation of laser conditioning in KDP and DKDP crystals,” Proc. SPIE 5991, 599107 (2005).
    [Crossref]
  39. H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, “Laser-induced damage in optical materials: fourteenth ASTM symposium,” Appl. Opt. 23(21), 3782–3795 (1984).
    [Crossref] [PubMed]
  40. A. Lanin and I. Fedik, Thermal stress resistance of materials (Springer, 2008).
  41. J. Schijve, J. Schijve, and J. Schijve, Fatigue of structures and materials (Springer, 2001).
  42. L. Gallais and J. Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
    [Crossref] [PubMed]
  43. J. Jia, Z. Shen, L. Yuan, and X. Ni, “Experimental and numerical investigations of wedge waves and its dispersion behaviors propagating along wedges,” Proc. SPIE 8192, 81922Q (2011).
    [Crossref]

2013 (1)

Y. Pan, B. Wang, Z. Shen, J. Lu, and X. Ni, “Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser,” Opt. Eng. 52(4), 044302 (2013).
[Crossref]

2011 (3)

B. Wang, G. Dai, H. Zhang, X. Ni, Z. Shen, and J. Lu, “Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser,” Appl. Surf. Sci. 257(23), 9977–9981 (2011).
[Crossref]

J. Jia, Z. Shen, L. Yuan, and X. Ni, “Experimental and numerical investigations of wedge waves and its dispersion behaviors propagating along wedges,” Proc. SPIE 8192, 81922Q (2011).
[Crossref]

B. Wang, H. Zhang, Y. Qin, X. Wang, X. Ni, Z. Shen, and J. Lu, “Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers,” Appl. Opt. 50(20), 3435–3441 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009).
[Crossref] [PubMed]

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

2008 (2)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation,” Int. J. Heat Mass Transfer 49(7-8), 1493–1500 (2006).
[Crossref]

2005 (2)

P. DeMange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “A multi-dimensional investigation of laser conditioning in KDP and DKDP crystals,” Proc. SPIE 5991, 599107 (2005).
[Crossref]

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

2004 (2)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

2003 (4)

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[Crossref]

L. Gallais and J. Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
[Crossref] [PubMed]

2002 (3)

2001 (3)

F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
[Crossref] [PubMed]

P. Solana, P. Kapadia, J. Dowden, W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “Time dependent ablation and liquid ejection processes during the laser drilling of metals,” Opt. Commun. 191(1-2), 97–112 (2001).
[Crossref]

C. Lehane and H. S. Kwok, “Enhanced drilling using a dual-pulse Nd:YAG laser,” Appl. Phys., A Mater. Sci. Process. 73(1), 45–48 (2001).
[Crossref]

2000 (1)

A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys., A Mater. Sci. Process. 71(6), 601–608 (2000).
[Crossref]

1999 (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

1998 (1)

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

1997 (1)

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

1987 (1)

C. L. Chan and J. Mazumder, “One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction,” J. Appl. Phys. 62(11), 4579–4586 (1987).
[Crossref]

1984 (1)

1977 (1)

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the ability of optical glass to withstand 10-msec laser pulses,” Sov. J. Quantum Electron. 7(2), 264–266 (1977).
[Crossref]

1976 (2)

N. E. Kask, L. S. Kornienko, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Effects of millisecond laser pulses on radiation-colored K-8 glass,” Sov. J. Quantum Electron. 6(7), 850–853 (1976).
[Crossref]

M. von Allmen, “Laser drilling velocity in metals,” J. Appl. Phys. 47(12), 5460–5463 (1976).
[Crossref]

1975 (2)

A. M. Bonch-Bruevich, Y. A. Imas, V. L. Komolov, V. S. Salyadinov, and V. N. Smirnov, “Heating of optical glass irradiated by a quasicontinuous neodymium-glass laser,” Sov. Phys. Tech. Phys. 20(5), 1117–1121 (1975).

J. A. Fox, “A method for improving continuous wave laser penetration of metal targets,” Appl. Phys. Lett. 26(12), 682–684 (1975).
[Crossref]

1973 (1)

1970 (1)

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41(10), 4023–4037 (1970).
[Crossref]

Akhouayri, H.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41(16), 3156–3166 (2002).
[Crossref] [PubMed]

Amra, C.

Armas, M. S.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Audouard, E.

Banks, P. S.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Bennett, H. E.

Bloembergen, N.

Bonch-Bruevich, A. M.

A. M. Bonch-Bruevich, Y. A. Imas, V. L. Komolov, V. S. Salyadinov, and V. N. Smirnov, “Heating of optical glass irradiated by a quasicontinuous neodymium-glass laser,” Sov. Phys. Tech. Phys. 20(5), 1117–1121 (1975).

Campbell, E. M.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Carr, C. W.

P. DeMange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “A multi-dimensional investigation of laser conditioning in KDP and DKDP crystals,” Proc. SPIE 5991, 599107 (2005).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Chan, C. L.

C. L. Chan and J. Mazumder, “One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction,” J. Appl. Phys. 62(11), 4579–4586 (1987).
[Crossref]

Chase, L. L.

Cheng, G.

Chin, S. L.

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[Crossref]

Chopornyak, D. B.

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the ability of optical glass to withstand 10-msec laser pulses,” Sov. J. Quantum Electron. 7(2), 264–266 (1977).
[Crossref]

N. E. Kask, L. S. Kornienko, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Effects of millisecond laser pulses on radiation-colored K-8 glass,” Sov. J. Quantum Electron. 6(7), 850–853 (1976).
[Crossref]

Commandré, M.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Dai, G.

B. Wang, G. Dai, H. Zhang, X. Ni, Z. Shen, and J. Lu, “Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser,” Appl. Surf. Sci. 257(23), 9977–9981 (2011).
[Crossref]

Dausinger, F.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

DeMange, P.

P. DeMange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “A multi-dimensional investigation of laser conditioning in KDP and DKDP crystals,” Proc. SPIE 5991, 599107 (2005).
[Crossref]

Demos, S. G.

P. DeMange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “A multi-dimensional investigation of laser conditioning in KDP and DKDP crystals,” Proc. SPIE 5991, 599107 (2005).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41(18), 3628–3633 (2002).
[Crossref] [PubMed]

Do, B. T.

Dodell, L.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Dowden, J.

P. Solana, P. Kapadia, J. Dowden, W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “Time dependent ablation and liquid ejection processes during the laser drilling of metals,” Opt. Commun. 191(1-2), 97–112 (2001).
[Crossref]

Duchateau, G.

Dyan, A.

Elaksher, F. F.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]

Fedorov, G. M.

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the ability of optical glass to withstand 10-msec laser pulses,” Sov. J. Quantum Electron. 7(2), 264–266 (1977).
[Crossref]

N. E. Kask, L. S. Kornienko, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Effects of millisecond laser pulses on radiation-colored K-8 glass,” Sov. J. Quantum Electron. 6(7), 850–853 (1976).
[Crossref]

Feit, M. D.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Forsman, A. C.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

Fox, J. A.

J. A. Fox, “A method for improving continuous wave laser penetration of metal targets,” Appl. Phys. Lett. 26(12), 682–684 (1975).
[Crossref]

Franco, M. A.

Gallais, L.

Gamal, Y. E.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]

Genin, F. Y.

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

Génin, F. Y.

F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
[Crossref] [PubMed]

A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys., A Mater. Sci. Process. 71(6), 601–608 (2000).
[Crossref]

Grillon, G.

Guenther, A. H.

Hafez, M. A.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]

Hand, D. P.

P. Solana, P. Kapadia, J. Dowden, W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “Time dependent ablation and liquid ejection processes during the laser drilling of metals,” Opt. Commun. 191(1-2), 97–112 (2001).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Hertel, I. V.

Hildenbrand, A.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Hopper, R. W.

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41(10), 4023–4037 (1970).
[Crossref]

Huot, N.

Imas, Y. A.

A. M. Bonch-Bruevich, Y. A. Imas, V. L. Komolov, V. S. Salyadinov, and V. N. Smirnov, “Heating of optical glass irradiated by a quasicontinuous neodymium-glass laser,” Sov. Phys. Tech. Phys. 20(5), 1117–1121 (1975).

Jia, J.

J. Jia, Z. Shen, L. Yuan, and X. Ni, “Experimental and numerical investigations of wedge waves and its dispersion behaviors propagating along wedges,” Proc. SPIE 8192, 81922Q (2011).
[Crossref]

Jones, J. D. C.

P. Solana, P. Kapadia, J. Dowden, W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “Time dependent ablation and liquid ejection processes during the laser drilling of metals,” Opt. Commun. 191(1-2), 97–112 (2001).
[Crossref]

Kacham, V.

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[Crossref]

Kapadia, P.

P. Solana, P. Kapadia, J. Dowden, W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “Time dependent ablation and liquid ejection processes during the laser drilling of metals,” Opt. Commun. 191(1-2), 97–112 (2001).
[Crossref]

Kasaai, M. R.

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[Crossref]

Kask, N. E.

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the ability of optical glass to withstand 10-msec laser pulses,” Sov. J. Quantum Electron. 7(2), 264–266 (1977).
[Crossref]

N. E. Kask, L. S. Kornienko, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Effects of millisecond laser pulses on radiation-colored K-8 glass,” Sov. J. Quantum Electron. 6(7), 850–853 (1976).
[Crossref]

Khedr, M. A.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]

Komolov, V. L.

A. M. Bonch-Bruevich, Y. A. Imas, V. L. Komolov, V. S. Salyadinov, and V. N. Smirnov, “Heating of optical glass irradiated by a quasicontinuous neodymium-glass laser,” Sov. Phys. Tech. Phys. 20(5), 1117–1121 (1975).

Kornienko, L. S.

N. E. Kask, L. S. Kornienko, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Effects of millisecond laser pulses on radiation-colored K-8 glass,” Sov. J. Quantum Electron. 6(7), 850–853 (1976).
[Crossref]

Kozlowski, M. R.

S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41(18), 3628–3633 (2002).
[Crossref] [PubMed]

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

Kraus, M.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Kudesia, S. S.

P. Solana, P. Kapadia, J. Dowden, W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “Time dependent ablation and liquid ejection processes during the laser drilling of metals,” Opt. Commun. 191(1-2), 97–112 (2001).
[Crossref]

Kwok, H. S.

C. Lehane and H. S. Kwok, “Enhanced drilling using a dual-pulse Nd:YAG laser,” Appl. Phys., A Mater. Sci. Process. 73(1), 45–48 (2001).
[Crossref]

Lee, J. S.

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation,” Int. J. Heat Mass Transfer 49(7-8), 1493–1500 (2006).
[Crossref]

Lee, S. H.

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation,” Int. J. Heat Mass Transfer 49(7-8), 1493–1500 (2006).
[Crossref]

Lehane, C.

C. Lehane and H. S. Kwok, “Enhanced drilling using a dual-pulse Nd:YAG laser,” Appl. Phys., A Mater. Sci. Process. 73(1), 45–48 (2001).
[Crossref]

Liu, J. S.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Lu, J.

Y. Pan, B. Wang, Z. Shen, J. Lu, and X. Ni, “Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser,” Opt. Eng. 52(4), 044302 (2013).
[Crossref]

B. Wang, G. Dai, H. Zhang, X. Ni, Z. Shen, and J. Lu, “Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser,” Appl. Surf. Sci. 257(23), 9977–9981 (2011).
[Crossref]

B. Wang, H. Zhang, Y. Qin, X. Wang, X. Ni, Z. Shen, and J. Lu, “Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers,” Appl. Opt. 50(20), 3435–3441 (2011).
[Crossref] [PubMed]

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49(29), 5537–5544 (2010).
[Crossref] [PubMed]

Mauclair, C.

Mazumder, J.

C. L. Chan and J. Mazumder, “One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction,” J. Appl. Phys. 62(11), 4579–4586 (1987).
[Crossref]

Michalowski, A.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Milam, D.

Mysyrowicz, A.

Natoli, J. Y.

Natoli, J.-Y.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Negres, R. A.

P. DeMange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “A multi-dimensional investigation of laser conditioning in KDP and DKDP crystals,” Proc. SPIE 5991, 599107 (2005).
[Crossref]

Newnam, B. E.

Ni, X.

Y. Pan, B. Wang, Z. Shen, J. Lu, and X. Ni, “Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser,” Opt. Eng. 52(4), 044302 (2013).
[Crossref]

J. Jia, Z. Shen, L. Yuan, and X. Ni, “Experimental and numerical investigations of wedge waves and its dispersion behaviors propagating along wedges,” Proc. SPIE 8192, 81922Q (2011).
[Crossref]

B. Wang, G. Dai, H. Zhang, X. Ni, Z. Shen, and J. Lu, “Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser,” Appl. Surf. Sci. 257(23), 9977–9981 (2011).
[Crossref]

B. Wang, H. Zhang, Y. Qin, X. Wang, X. Ni, Z. Shen, and J. Lu, “Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers,” Appl. Opt. 50(20), 3435–3441 (2011).
[Crossref] [PubMed]

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49(29), 5537–5544 (2010).
[Crossref] [PubMed]

Nibbering, E. T. J.

Oh, Y. M.

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation,” Int. J. Heat Mass Transfer 49(7-8), 1493–1500 (2006).
[Crossref]

Pan, Y.

Y. Pan, B. Wang, Z. Shen, J. Lu, and X. Ni, “Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser,” Opt. Eng. 52(4), 044302 (2013).
[Crossref]

Park, S.

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation,” Int. J. Heat Mass Transfer 49(7-8), 1493–1500 (2006).
[Crossref]

Perry, M. D.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Pistor, T. V.

Prade, B. S.

Qin, Y.

Radchenko, V. V.

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the ability of optical glass to withstand 10-msec laser pulses,” Sov. J. Quantum Electron. 7(2), 264–266 (1977).
[Crossref]

N. E. Kask, L. S. Kornienko, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Effects of millisecond laser pulses on radiation-colored K-8 glass,” Sov. J. Quantum Electron. 6(7), 850–853 (1976).
[Crossref]

Radousky, H. B.

P. DeMange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “A multi-dimensional investigation of laser conditioning in KDP and DKDP crystals,” Proc. SPIE 5991, 599107 (2005).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Rodden, W. S. O.

P. Solana, P. Kapadia, J. Dowden, W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “Time dependent ablation and liquid ejection processes during the laser drilling of metals,” Opt. Commun. 191(1-2), 97–112 (2001).
[Crossref]

Rosenfeld, A.

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Salleo, A.

F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
[Crossref] [PubMed]

A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys., A Mater. Sci. Process. 71(6), 601–608 (2000).
[Crossref]

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

Salyadinov, V. S.

A. M. Bonch-Bruevich, Y. A. Imas, V. L. Komolov, V. S. Salyadinov, and V. N. Smirnov, “Heating of optical glass irradiated by a quasicontinuous neodymium-glass laser,” Sov. Phys. Tech. Phys. 20(5), 1117–1121 (1975).

Sands, T.

A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys., A Mater. Sci. Process. 71(6), 601–608 (2000).
[Crossref]

Shen, Z.

Y. Pan, B. Wang, Z. Shen, J. Lu, and X. Ni, “Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser,” Opt. Eng. 52(4), 044302 (2013).
[Crossref]

B. Wang, G. Dai, H. Zhang, X. Ni, Z. Shen, and J. Lu, “Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser,” Appl. Surf. Sci. 257(23), 9977–9981 (2011).
[Crossref]

J. Jia, Z. Shen, L. Yuan, and X. Ni, “Experimental and numerical investigations of wedge waves and its dispersion behaviors propagating along wedges,” Proc. SPIE 8192, 81922Q (2011).
[Crossref]

B. Wang, H. Zhang, Y. Qin, X. Wang, X. Ni, Z. Shen, and J. Lu, “Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers,” Appl. Opt. 50(20), 3435–3441 (2011).
[Crossref] [PubMed]

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49(29), 5537–5544 (2010).
[Crossref] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Smirnov, V. N.

A. M. Bonch-Bruevich, Y. A. Imas, V. L. Komolov, V. S. Salyadinov, and V. N. Smirnov, “Heating of optical glass irradiated by a quasicontinuous neodymium-glass laser,” Sov. Phys. Tech. Phys. 20(5), 1117–1121 (1975).

Smith, A. V.

Solana, P.

P. Solana, P. Kapadia, J. Dowden, W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “Time dependent ablation and liquid ejection processes during the laser drilling of metals,” Opt. Commun. 191(1-2), 97–112 (2001).
[Crossref]

Sommer, S.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Staggs, M.

Stoian, R.

Stolz, C. J.

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Theberge, F.

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[Crossref]

Uhlmann, D. R.

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41(10), 4023–4037 (1970).
[Crossref]

von Allmen, M.

M. von Allmen, “Laser drilling velocity in metals,” J. Appl. Phys. 47(12), 5460–5463 (1976).
[Crossref]

Wagner, F. R.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Walter, D.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Wang, B.

Y. Pan, B. Wang, Z. Shen, J. Lu, and X. Ni, “Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser,” Opt. Eng. 52(4), 044302 (2013).
[Crossref]

B. Wang, G. Dai, H. Zhang, X. Ni, Z. Shen, and J. Lu, “Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser,” Appl. Surf. Sci. 257(23), 9977–9981 (2011).
[Crossref]

B. Wang, H. Zhang, Y. Qin, X. Wang, X. Ni, Z. Shen, and J. Lu, “Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers,” Appl. Opt. 50(20), 3435–3441 (2011).
[Crossref] [PubMed]

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49(29), 5537–5544 (2010).
[Crossref] [PubMed]

Wang, X.

Wang, X. D.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Yoshiyama, J. M.

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

Yuan, L.

J. Jia, Z. Shen, L. Yuan, and X. Ni, “Experimental and numerical investigations of wedge waves and its dispersion behaviors propagating along wedges,” Proc. SPIE 8192, 81922Q (2011).
[Crossref]

Zhang, H.

B. Wang, G. Dai, H. Zhang, X. Ni, Z. Shen, and J. Lu, “Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser,” Appl. Surf. Sci. 257(23), 9977–9981 (2011).
[Crossref]

B. Wang, H. Zhang, Y. Qin, X. Wang, X. Ni, Z. Shen, and J. Lu, “Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers,” Appl. Opt. 50(20), 3435–3441 (2011).
[Crossref] [PubMed]

Appl. Opt. (8)

S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41(18), 3628–3633 (2002).
[Crossref] [PubMed]

J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41(16), 3156–3166 (2002).
[Crossref] [PubMed]

B. Wang, Y. Qin, X. Ni, Z. Shen, and J. Lu, “Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films,” Appl. Opt. 49(29), 5537–5544 (2010).
[Crossref] [PubMed]

B. Wang, H. Zhang, Y. Qin, X. Wang, X. Ni, Z. Shen, and J. Lu, “Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers,” Appl. Opt. 50(20), 3435–3441 (2011).
[Crossref] [PubMed]

A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
[Crossref] [PubMed]

N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
[Crossref] [PubMed]

H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, “Laser-induced damage in optical materials: fourteenth ASTM symposium,” Appl. Opt. 23(21), 3782–3795 (1984).
[Crossref] [PubMed]

L. Gallais and J. Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. A. Fox, “A method for improving continuous wave laser penetration of metal targets,” Appl. Phys. Lett. 26(12), 682–684 (1975).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

C. Lehane and H. S. Kwok, “Enhanced drilling using a dual-pulse Nd:YAG laser,” Appl. Phys., A Mater. Sci. Process. 73(1), 45–48 (2001).
[Crossref]

A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys., A Mater. Sci. Process. 71(6), 601–608 (2000).
[Crossref]

Appl. Surf. Sci. (1)

B. Wang, G. Dai, H. Zhang, X. Ni, Z. Shen, and J. Lu, “Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser,” Appl. Surf. Sci. 257(23), 9977–9981 (2011).
[Crossref]

Int. J. Heat Mass Transfer (1)

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation,” Int. J. Heat Mass Transfer 49(7-8), 1493–1500 (2006).
[Crossref]

J. Appl. Phys. (5)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

M. von Allmen, “Laser drilling velocity in metals,” J. Appl. Phys. 47(12), 5460–5463 (1976).
[Crossref]

C. L. Chan and J. Mazumder, “One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction,” J. Appl. Phys. 62(11), 4579–4586 (1987).
[Crossref]

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98(3), 033302 (2005).
[Crossref]

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41(10), 4023–4037 (1970).
[Crossref]

J. Non-Cryst. Solids (1)

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. Solana, P. Kapadia, J. Dowden, W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “Time dependent ablation and liquid ejection processes during the laser drilling of metals,” Opt. Commun. 191(1-2), 97–112 (2001).
[Crossref]

Opt. Eng. (2)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Y. Pan, B. Wang, Z. Shen, J. Lu, and X. Ni, “Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser,” Opt. Eng. 52(4), 044302 (2013).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Plasma Sources Sci. Technol. (1)

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]

Proc. SPIE (4)

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[Crossref]

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

P. DeMange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “A multi-dimensional investigation of laser conditioning in KDP and DKDP crystals,” Proc. SPIE 5991, 599107 (2005).
[Crossref]

J. Jia, Z. Shen, L. Yuan, and X. Ni, “Experimental and numerical investigations of wedge waves and its dispersion behaviors propagating along wedges,” Proc. SPIE 8192, 81922Q (2011).
[Crossref]

Sov. J. Quantum Electron. (2)

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the ability of optical glass to withstand 10-msec laser pulses,” Sov. J. Quantum Electron. 7(2), 264–266 (1977).
[Crossref]

N. E. Kask, L. S. Kornienko, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Effects of millisecond laser pulses on radiation-colored K-8 glass,” Sov. J. Quantum Electron. 6(7), 850–853 (1976).
[Crossref]

Sov. Phys. Tech. Phys. (1)

A. M. Bonch-Bruevich, Y. A. Imas, V. L. Komolov, V. S. Salyadinov, and V. N. Smirnov, “Heating of optical glass irradiated by a quasicontinuous neodymium-glass laser,” Sov. Phys. Tech. Phys. 20(5), 1117–1121 (1975).

Other (4)

C. G. Morgan, “Laser-induced electrical breakdown of gases,” Electrical breakdown of gases. New York: Wiley, 717 (1978).

ISO 21254–2, “Lasers and laser-related equipment-Test methods for laser-induced damage threshold - Part 2: Threshold determination,” (2011).

A. Lanin and I. Fedik, Thermal stress resistance of materials (Springer, 2008).

J. Schijve, J. Schijve, and J. Schijve, Fatigue of structures and materials (Springer, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for CPL processing of BK7.
Fig. 2
Fig. 2 Detected signal of CPL, where Δt indicates the interval time between ns laser and ms laser, and is defined as the delay of CPL. In this figure Δt = 1.0ms.
Fig. 3
Fig. 3 Modified morphologies induced by ns laser, ms laser and CPL, respectively. (a) Result of single ns laser, Ens = 19.6mJ. (b) Result of CPL, Ems = 23.9J, Δt = 8ms. (c) Result of CPL, Ems = 30.6J, Δt = 100ms. (d) Side view of HMS induced by single ms laser, Ems = 33.5J.
Fig. 4
Fig. 4 Processing efficiencies of CPL with different delays. Empty square symbols and solid circle symbols are results of CPL with ms laser energy of 17.6J and 23.9J, respectively. Error bars are calculated using the method presented in reference [28]. The dashed line and the solid line are processing efficiencies of single ms laser with energy of 17.6J and 23.9J, respectively.
Fig. 5
Fig. 5 Ratios of SMS and HMS relative to the total modified sites. Square symbols and solid lines are results of CPL and single ms laser, respectively. (a) Ratios of SMS relative to the total modified sites, Ems = 17.6J. (b) Ratios of HMS relative to the total modified sites, Ems = 17.6J. (c) Ratios of SMS relative to the total modified sites, Ems = 23.9J. (d) Ratios of HMS relative to the total modified sites, Ems = 23.9J.
Fig. 6
Fig. 6 Calculation model. (a) Simplified model. (b) 2D calculation model.
Fig. 7
Fig. 7 x component of thermal stress field tensor at t = 1.0ms. (a) Without any groove at the surface. (b) With a groove at the surface, wc = 8μm, dc = 0.4μm. (c) Variation of x component along the groove surface. (d) Maximum of x component under different mesh sizes at groove tip.
Fig. 8
Fig. 8 Influence of groove parameters on x component, where square symbols represent the maximum of x component of stress field, solid circle symbols represent area in which x component stress is larger than the tensile stress 28MPa. (a)Effect of the depth. (b) Effect of the open angle.

Tables (2)

Tables Icon

Table 1 Processing efficiencies of single ms laser and CPL(Δt = 1ms) with different Ems

Tables Icon

Table 2 Summary of parameters used for calculation and analysis

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ρ C p T( x,y,t ) t =K 2 T( x,y,t )+Q( x,y,t )
K( x )T( x,y,t )| x=0,W = K( x )T( x,y,t )| y=0,H =0
T( x,y,0 )= T 0
Q( x,y,t )=αI( x,t )exp( αabs( yH ) )
I( x,t )= I 0 ƒ( x )g( t )
ƒ( x )=exp( 2 ( xW/2 ) 2 R 0 2 )
g( t )={ 1,0<t τ ms 0,t> τ ms
μ 2 U( x,y,t )+( λ+μ )( U( x,y,t ) )=ρ 2 t 2 U( x,y,t )+βT( x,y,t )
n[ σ( 3λ+2μ ) α T T( x,y,t )I ]=0
U( x,y,0 )= U( x,y,t ) t | t=0 =0

Metrics