Abstract

We report on surface second-order optical nonlinearity in single GaP nanopillars (nanowaveguides). The relative contribution of optical nonlinearity from the surface and the bulk is resolved by mode confinement analysis and polarization measurements. By investigating the thickness of nonlinear region at the surface of nanopillars, we estimated the nonlinear coefficient to be ~15 times higher at the surface with respect to the bulk. The presented results are interesting both from the fundamental aspects of light–matter interaction and for future nonlinear nanophotonic devices with smaller footprint.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Calibration of the second-order nonlinear optical susceptibility of surface and bulk of glass

Francisco J. Rodriguez, Fu Xiang Wang, and Martti Kauranen
Opt. Express 16(12) 8704-8710 (2008)

Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis

Alessio Benedetti, Marco Centini, Mario Bertolotti, and Concita Sibilia
Opt. Express 19(27) 26752-26767 (2011)

Dynamic cross-waveguide optical switching with a nonlinear photonic band-gap structure

Stefan Scholz, Ortwin Hess, and Roland Rühle
Opt. Express 3(1) 28-34 (1998)

References

  • View by:
  • |
  • |
  • |

  1. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
    [Crossref] [PubMed]
  2. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
    [Crossref]
  3. R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
    [Crossref]
  4. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [Crossref]
  5. R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
    [Crossref] [PubMed]
  6. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  7. W. Liu, K. Wang, Z. Liu, G. Shen, and P. Lu, “Laterally emitted surface second harmonic generation in a single ZnTe nanowire,” Nano Lett. 13(9), 4224–4229 (2013).
    [Crossref] [PubMed]
  8. M. Khorasaninejad, M. A. Swillam, K. Pillai, and S. S. Saini, “Silicon nanowire arrays with enhanced optical properties,” Opt. Lett. 37(20), 4194–4196 (2012).
    [Crossref] [PubMed]
  9. H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006).
    [Crossref]
  10. R. Cisek, V. Barzda, H. E. Ruda, and A. Shik, “Nonlinear optical properties of semiconductor nanowires,” IEEE J. Sel. Top. Quantum Electron. 17(4), 915–921 (2011).
    [Crossref]
  11. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  12. R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
    [Crossref]
  13. P. S. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130(3), 919–929 (1963).
    [Crossref]
  14. N. Bloembergen and P. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128(2), 606–622 (1962).
    [Crossref]
  15. J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. 10, 474–476 (1963).
  16. W. L. Mochan and J. A. Maytorena, “Theory of surface second harmonic generation,” in Epioptics-8 : Proceedings of the 33rd Course of the International School of Solid State Physics, Cricenti and Antonio, eds. (2006), pp. 17–45.
  17. M. Straub, R. Vollmer, and J. Kirschner, “Surface Magnetism of Ultrathin gamma -Fe Films Investigated by Nonlinear Magneto-optical Kerr Effect,” Phys. Rev. Lett. 77(4), 743–746 (1996).
    [Crossref] [PubMed]
  18. Q. Jin, H. Regensburger, R. Vollmer, and J. Kirschner, “Periodic Oscillations of the Surface Magnetization during the Growth of Co Films on Cu(001),” Phys. Rev. Lett. 80(18), 4056–4059 (1998).
    [Crossref]
  19. J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009).
    [Crossref] [PubMed]
  20. A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
    [Crossref] [PubMed]
  21. S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Nonlinear frequency conversion using high-quality modes in GaAs nanobeam cavities,” Opt. Lett. 39(19), 5673–5676 (2014).
    [Crossref] [PubMed]
  22. R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
    [Crossref] [PubMed]
  23. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B Condens. Matter 33(12), 8254–8263 (1986).
    [Crossref] [PubMed]
  24. D. Epperlein, B. Dick, G. Marowsky, and G. A. Reider, “Second-harmonic generation in centro-symmetric media,” Appl. Phys. B 44(1), 5–10 (1987).
    [Crossref]
  25. K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32(2), 021801 (2014).
    [Crossref]

2014 (4)

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Nonlinear frequency conversion using high-quality modes in GaAs nanobeam cavities,” Opt. Lett. 39(19), 5673–5676 (2014).
[Crossref] [PubMed]

R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32(2), 021801 (2014).
[Crossref]

2013 (1)

W. Liu, K. Wang, Z. Liu, G. Shen, and P. Lu, “Laterally emitted surface second harmonic generation in a single ZnTe nanowire,” Nano Lett. 13(9), 4224–4229 (2013).
[Crossref] [PubMed]

2012 (2)

M. Khorasaninejad, M. A. Swillam, K. Pillai, and S. S. Saini, “Silicon nanowire arrays with enhanced optical properties,” Opt. Lett. 37(20), 4194–4196 (2012).
[Crossref] [PubMed]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
[Crossref] [PubMed]

2011 (1)

R. Cisek, V. Barzda, H. E. Ruda, and A. Shik, “Nonlinear optical properties of semiconductor nanowires,” IEEE J. Sel. Top. Quantum Electron. 17(4), 915–921 (2011).
[Crossref]

2010 (1)

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

2009 (2)

2007 (1)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

2006 (1)

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006).
[Crossref]

2002 (1)

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

1998 (1)

Q. Jin, H. Regensburger, R. Vollmer, and J. Kirschner, “Periodic Oscillations of the Surface Magnetization during the Growth of Co Films on Cu(001),” Phys. Rev. Lett. 80(18), 4056–4059 (1998).
[Crossref]

1996 (1)

M. Straub, R. Vollmer, and J. Kirschner, “Surface Magnetism of Ultrathin gamma -Fe Films Investigated by Nonlinear Magneto-optical Kerr Effect,” Phys. Rev. Lett. 77(4), 743–746 (1996).
[Crossref] [PubMed]

1987 (1)

D. Epperlein, B. Dick, G. Marowsky, and G. A. Reider, “Second-harmonic generation in centro-symmetric media,” Appl. Phys. B 44(1), 5–10 (1987).
[Crossref]

1986 (1)

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B Condens. Matter 33(12), 8254–8263 (1986).
[Crossref] [PubMed]

1963 (2)

J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. 10, 474–476 (1963).

P. S. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130(3), 919–929 (1963).
[Crossref]

1962 (2)

N. Bloembergen and P. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128(2), 606–622 (1962).
[Crossref]

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Anand, S.

R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32(2), 021801 (2014).
[Crossref]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
[Crossref] [PubMed]

Awan, K. M.

K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32(2), 021801 (2014).
[Crossref]

Barzda, V.

R. Cisek, V. Barzda, H. E. Ruda, and A. Shik, “Nonlinear optical properties of semiconductor nanowires,” IEEE J. Sel. Top. Quantum Electron. 17(4), 915–921 (2011).
[Crossref]

Biermann, K.

Bloembergen, N.

J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. 10, 474–476 (1963).

N. Bloembergen and P. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128(2), 606–622 (1962).
[Crossref]

Buckley, S.

Casadei, A.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Chang-Hasnain, C.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Chen, R.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Chen, W.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B Condens. Matter 33(12), 8254–8263 (1986).
[Crossref] [PubMed]

Chuang, L. C.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Cisek, R.

R. Cisek, V. Barzda, H. E. Ruda, and A. Shik, “Nonlinear optical properties of semiconductor nanowires,” IEEE J. Sel. Top. Quantum Electron. 17(4), 915–921 (2011).
[Crossref]

Crankshaw, S.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Dadap, J. I.

Dal Negro, L.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Dick, B.

D. Epperlein, B. Dick, G. Marowsky, and G. A. Reider, “Second-harmonic generation in centro-symmetric media,” Appl. Phys. B 44(1), 5–10 (1987).
[Crossref]

Driscoll, J. B.

Ducuing, J.

J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. 10, 474–476 (1963).

Epperlein, D.

D. Epperlein, B. Dick, G. Marowsky, and G. A. Reider, “Second-harmonic generation in centro-symmetric media,” Appl. Phys. B 44(1), 5–10 (1987).
[Crossref]

Fontcuberta i Morral, A.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Forestiere, C.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Guyot-Sionnest, P.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B Condens. Matter 33(12), 8254–8263 (1986).
[Crossref] [PubMed]

Heiss, M.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Hsieh, I.

Jin, Q.

Q. Jin, H. Regensburger, R. Vollmer, and J. Kirschner, “Periodic Oscillations of the Surface Magnetization during the Growth of Co Films on Cu(001),” Phys. Rev. Lett. 80(18), 4056–4059 (1998).
[Crossref]

Johnson, J. C.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Khorasaninejad, M.

Kirschner, J.

Q. Jin, H. Regensburger, R. Vollmer, and J. Kirschner, “Periodic Oscillations of the Surface Magnetization during the Growth of Co Films on Cu(001),” Phys. Rev. Lett. 80(18), 4056–4059 (1998).
[Crossref]

M. Straub, R. Vollmer, and J. Kirschner, “Surface Magnetism of Ultrathin gamma -Fe Films Investigated by Nonlinear Magneto-optical Kerr Effect,” Phys. Rev. Lett. 77(4), 743–746 (1996).
[Crossref] [PubMed]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Liu, W.

W. Liu, K. Wang, Z. Liu, G. Shen, and P. Lu, “Laterally emitted surface second harmonic generation in a single ZnTe nanowire,” Nano Lett. 13(9), 4224–4229 (2013).
[Crossref] [PubMed]

Liu, X.

Liu, Z.

W. Liu, K. Wang, Z. Liu, G. Shen, and P. Lu, “Laterally emitted surface second harmonic generation in a single ZnTe nanowire,” Nano Lett. 13(9), 4224–4229 (2013).
[Crossref] [PubMed]

Lu, P.

W. Liu, K. Wang, Z. Liu, G. Shen, and P. Lu, “Laterally emitted surface second harmonic generation in a single ZnTe nanowire,” Nano Lett. 13(9), 4224–4229 (2013).
[Crossref] [PubMed]

Maker, P. D.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

Marowsky, G.

D. Epperlein, B. Dick, G. Marowsky, and G. A. Reider, “Second-harmonic generation in centro-symmetric media,” Appl. Phys. B 44(1), 5–10 (1987).
[Crossref]

Matteini, F.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Moewe, M.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Osgood, R. M.

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Pecora, E. F.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Pershan, P.

N. Bloembergen and P. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128(2), 606–622 (1962).
[Crossref]

Pershan, P. S.

P. S. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130(3), 919–929 (1963).
[Crossref]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Petersen, P. B.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Petykiewicz, J.

Pillai, K.

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Radulaski, M.

Regensburger, H.

Q. Jin, H. Regensburger, R. Vollmer, and J. Kirschner, “Periodic Oscillations of the Surface Magnetization during the Growth of Co Films on Cu(001),” Phys. Rev. Lett. 80(18), 4056–4059 (1998).
[Crossref]

Reider, G. A.

D. Epperlein, B. Dick, G. Marowsky, and G. A. Reider, “Second-harmonic generation in centro-symmetric media,” Appl. Phys. B 44(1), 5–10 (1987).
[Crossref]

Ruda, H. E.

R. Cisek, V. Barzda, H. E. Ruda, and A. Shik, “Nonlinear optical properties of semiconductor nanowires,” IEEE J. Sel. Top. Quantum Electron. 17(4), 915–921 (2011).
[Crossref]

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006).
[Crossref]

Rüffer, D.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Russo-Averchi, E.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Saini, S. S.

Sanatinia, R.

K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32(2), 021801 (2014).
[Crossref]

R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
[Crossref] [PubMed]

Savage, C. M.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Schaller, R. D.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Shen, G.

W. Liu, K. Wang, Z. Liu, G. Shen, and P. Lu, “Laterally emitted surface second harmonic generation in a single ZnTe nanowire,” Nano Lett. 13(9), 4224–4229 (2013).
[Crossref] [PubMed]

Shen, Y. R.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B Condens. Matter 33(12), 8254–8263 (1986).
[Crossref] [PubMed]

Shik, A.

R. Cisek, V. Barzda, H. E. Ruda, and A. Shik, “Nonlinear optical properties of semiconductor nanowires,” IEEE J. Sel. Top. Quantum Electron. 17(4), 915–921 (2011).
[Crossref]

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006).
[Crossref]

Straub, M.

M. Straub, R. Vollmer, and J. Kirschner, “Surface Magnetism of Ultrathin gamma -Fe Films Investigated by Nonlinear Magneto-optical Kerr Effect,” Phys. Rev. Lett. 77(4), 743–746 (1996).
[Crossref] [PubMed]

Swillam, M. A.

Swillo, M.

R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
[Crossref] [PubMed]

Terhune, R. W.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

Tran, T.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Trevino, J.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Tutuncuoglu, G.

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

Vollmer, R.

Q. Jin, H. Regensburger, R. Vollmer, and J. Kirschner, “Periodic Oscillations of the Surface Magnetization during the Growth of Co Films on Cu(001),” Phys. Rev. Lett. 80(18), 4056–4059 (1998).
[Crossref]

M. Straub, R. Vollmer, and J. Kirschner, “Surface Magnetism of Ultrathin gamma -Fe Films Investigated by Nonlinear Magneto-optical Kerr Effect,” Phys. Rev. Lett. 77(4), 743–746 (1996).
[Crossref] [PubMed]

Vuckovic, J.

Wang, K.

W. Liu, K. Wang, Z. Liu, G. Shen, and P. Lu, “Laterally emitted surface second harmonic generation in a single ZnTe nanowire,” Nano Lett. 13(9), 4224–4229 (2013).
[Crossref] [PubMed]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Yan, H.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yang, P.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Yasseri, S.

Zhang, J. L.

Appl. Phys. B (1)

D. Epperlein, B. Dick, G. Marowsky, and G. A. Reider, “Second-harmonic generation in centro-symmetric media,” Appl. Phys. B 44(1), 5–10 (1987).
[Crossref]

Appl. Phys. Lett. (1)

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Cisek, V. Barzda, H. E. Ruda, and A. Shik, “Nonlinear optical properties of semiconductor nanowires,” IEEE J. Sel. Top. Quantum Electron. 17(4), 915–921 (2011).
[Crossref]

J. Appl. Phys. (1)

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006).
[Crossref]

J. Vac. Sci. Technol. B (1)

K. M. Awan, R. Sanatinia, and S. Anand, “Nanostructuring of GaAs with tailored topologies using colloidal lithography and dry etching,” J. Vac. Sci. Technol. B 32(2), 021801 (2014).
[Crossref]

Nano Lett. (5)

A. Casadei, E. F. Pecora, J. Trevino, C. Forestiere, D. Rüffer, E. Russo-Averchi, F. Matteini, G. Tutuncuoglu, M. Heiss, A. Fontcuberta i Morral, and L. Dal Negro, “Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas,” Nano Lett. 14(5), 2271–2278 (2014).
[Crossref] [PubMed]

R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

W. Liu, K. Wang, Z. Liu, G. Shen, and P. Lu, “Laterally emitted surface second harmonic generation in a single ZnTe nanowire,” Nano Lett. 13(9), 4224–4229 (2013).
[Crossref] [PubMed]

R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Nat. Photonics (1)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Nature (1)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. (3)

P. S. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130(3), 919–929 (1963).
[Crossref]

N. Bloembergen and P. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128(2), 606–622 (1962).
[Crossref]

J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. 10, 474–476 (1963).

Phys. Rev. B Condens. Matter (1)

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B Condens. Matter 33(12), 8254–8263 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

M. Straub, R. Vollmer, and J. Kirschner, “Surface Magnetism of Ultrathin gamma -Fe Films Investigated by Nonlinear Magneto-optical Kerr Effect,” Phys. Rev. Lett. 77(4), 743–746 (1996).
[Crossref] [PubMed]

Q. Jin, H. Regensburger, R. Vollmer, and J. Kirschner, “Periodic Oscillations of the Surface Magnetization during the Growth of Co Films on Cu(001),” Phys. Rev. Lett. 80(18), 4056–4059 (1998).
[Crossref]

Other (2)

W. L. Mochan and J. A. Maytorena, “Theory of surface second harmonic generation,” in Epioptics-8 : Proceedings of the 33rd Course of the International School of Solid State Physics, Cricenti and Antonio, eds. (2006), pp. 17–45.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simulation showing electric field profile of the guided fundamental mode (HE11) in a 170 nm diameter GaP nanowaveguide (along z axis) for the pump with 830 nm wavelength: a) Ex component; b) Ez component. Ey component is an order of magnitude lower than Ex and Ez.
Fig. 2
Fig. 2 The geometry for launching pump into the nanopillar indicating polarization of the electric field for the guided pump, generated second harmonic and the thickness “δ” of the surface nonlinear region.
Fig. 3
Fig. 3 Numerical simulation of the ratio of the intensity of second harmonic generation at the surface to that of the bulk in GaP nanopillars with different diameters for various effective nonlinear region thicknesses (δ). The results are normalized to ( d 11 s /d25)2. The pump wavelength is 830 nm.
Fig. 4
Fig. 4 (a) SEM image of a single GaP nanopillar. (b) Schematics of the optical set-up for polarization measurement of SHG from single GaP nanopillars. (c) A representative TEM image of a GaP nanopillar. (d) High-resolution TEM image of the nanopillar. (e) Magnified view of the selected area in (d). The high crystalline quality of the nanopillars and the smooth sidewalls are visible.
Fig. 5
Fig. 5 Polarization measurements of SHG for single GaP nanopillars with different diameters. The pump polarization (830 nm wavelength) is indicated as an arrow along the x axis.
Fig. 6
Fig. 6 The ratio ρ of the nonlinear coefficients at the surface d 11 s and in the bulk d25 as a function of the effective thickness δ of the nonlinear region at the interface GaP/Air for different nanopillar diameters.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ P x (2) P y (2) P z (2) ]=[ d 11 s d 12 s d 13 s d 14 s . . . . . . d 25 s d 26 s . . . . d 35 s d 36 s ][ E x 2 E y 2 E z 2 2 E z E y 2 E z E x 2 E x E y ]
P y (2) =2  d 25 E x (x,y) E z (x,y) e 2i( ωt β ω z )
P (2) = d 11 s ( E x ( x,y ) · e x · e ) 2 e 2i( ωt β ω z )
d 11 s d 25 I x ( 2ω ) I y ( 2ω ) 4 | E x E z | 2 dxdy Δs   ( | E x | 2 · ( e x · e ) 3 ) 2 dxdy  ,

Metrics