Abstract

We demonstrate the continuous-wave operation of lambda-scale embedded active-region photonic-crystal (LEAP) lasers at room temperature, which we fabricated on a Si wafer. The on-Si LEAP lasers exhibit a threshold current of 31 μA, which is the lowest reported value for any type of semiconductor laser on Si. This reveals the great potential of LEAP lasers as light sources for on- or off-chip optical interconnects with ultra-low power consumption in future information communication technology devices including CMOS processors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser

Shinji Matsuo, Koji Takeda, Tomonari Sato, Masaya Notomi, Akihiko Shinya, Kengo Nozaki, Hideaki Taniyama, Koichi Hasebe, and Takaaki Kakitsuka
Opt. Express 20(4) 3773-3780 (2012)

Low-operating-energy directly modulated lasers for short-distance optical interconnects

Shinji Matsuo and Takaaki Kakitsuka
Adv. Opt. Photon. 10(3) 567-643 (2018)

4–λ hybrid InGaAsP-Si evanescent laser array with low power consumption for on-chip optical interconnects

Yajie Li, Hongyan Yu, Wengyu Yang, Chaoyang Ge, Pengfei Wang, Fangyuan Meng, Guangzhen Luo, Mengqi Wang, Xuliang Zhou, Dan Lu, Guangzhao Ran, and Jiaoqing Pan
Photon. Res. 7(6) 687-692 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Ministry of Internal Affairs and Communications, Japan, http://www.soumu.go.jp/
  2. C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
    [Crossref]
  3. A. Benner, “Optical interconnect opportunities in supercomputers and high end computing,” in Optical Fiber Communication Conference (OFC), 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper OTu2B.
    [Crossref]
  4. D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  5. International Technology Roadmap for Semiconductors, http://www.itrs.net/
  6. Y. A. Vlsaov, “Silicon photonics for next generation computing systems,” in Proceedings of European Conference on Optical Communications, paper SC2, 2008.
    [Crossref]
  7. W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
    [Crossref]
  8. K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens-integrated DFB laser arrays,” J. Lightwave Technol. 29(19), 2899–2905 (2011).
    [Crossref]
  9. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
    [Crossref] [PubMed]
  10. W. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” Photon. J. 4(2), 652–656 (2012).
    [Crossref]
  11. S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
    [Crossref]
  12. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [Crossref]
  13. S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
    [Crossref] [PubMed]
  14. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
    [Crossref]
  15. S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
    [Crossref]
  16. K. Nozaki, S. Matsuo, K. Takeda, T. Sato, T. Fujii, E. Kuramochi, and M. Notomi, “High-responsivity 1.7-μm-long InGaAs photodetectors based on photonic crystal with ultrasmall buried heterostructure,” in Conference on Lasers and Electro Optics (CLEO), 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper STh4I.3.
  17. K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated On-Chip Optical Links Using Photonic-Crystal Lasers and Photodetectors with Current Blocking Trenches,” in Optical Fiber Communication Conference (OFC), 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OM2J.5.
    [Crossref]
  18. K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, M. Notomi, and S. Matsuo, “5.5-fJ/bit direct modulation of lambda-scale embedded active region photonic-crystal lasers,” in Proceedings of Optical Interconnects Conference, (IEEE, 2013) pp. 104 – 105.
    [Crossref]
  19. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
    [Crossref]
  20. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
    [Crossref]
  21. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009).
    [Crossref] [PubMed]
  22. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
    [Crossref] [PubMed]
  23. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
    [Crossref]
  24. D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).
  25. G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
    [Crossref]

2014 (1)

2013 (3)

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

2012 (1)

W. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” Photon. J. 4(2), 652–656 (2012).
[Crossref]

2011 (6)

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011).
[Crossref] [PubMed]

K. Adachi, K. Shinoda, T. Kitatani, T. Fukamachi, Y. Matsuoka, T. Sugawara, and S. Tsuji, “25-Gb/s multichannel 1.3-μm surface-emitting lens-integrated DFB laser arrays,” J. Lightwave Technol. 29(19), 2899–2905 (2011).
[Crossref]

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

2010 (3)

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

2009 (2)

2001 (1)

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

1992 (1)

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[Crossref]

Adachi, K.

Arakawa, Y.

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Bar, H.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Bazin, A.

Bergman, K.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Biberman, A.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Bimberg, D.

W. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” Photon. J. 4(2), 652–656 (2012).
[Crossref]

Björk, G.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[Crossref]

Bowers, J.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Brubaker, C.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Chan, J.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Chapman, D.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Chen, C.-H.

Di Liang, D.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Fujii, T.

Fujisawa, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Fukamachi, T.

Gendry, M.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Gill, V.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Guimard, D.

Halioua, Y.

Hasebe, K.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Hiraiwa, K.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Hofmann, W.

W. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” Photon. J. 4(2), 652–656 (2012).
[Crossref]

Hollinger, G.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Imai, S.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Ishikawa, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Itabashi, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Ito, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Iwai, N.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Iwamoto, S.

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Juodawlkis, P.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Kakitsuka, T.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Kamalov, V.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Kamiya, S.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Karle, T. J.

Karlsson, A.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[Crossref]

Kasukawa, A.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Kawaguchi, Y.

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Kawakita, Y.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Kitatani, T.

Kobayashi, W.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Kohtoku, M.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Koley, B.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Kou, R.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Kurosaki, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Lam, C. F.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Lee, B. G.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Letartre, X.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Li, Y.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Liu, H.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Mann, C.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Matsuo, S.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Matsuoka, Y.

Miller, D.

D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Monat, C.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Monnier, P.

Moser, P.

W. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” Photon. J. 4(2), 652–656 (2012).
[Crossref]

Napoleone, T.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Nishi, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Nomura, M.

Notomi, M.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Nozaki, K.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Oakley, D.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Park, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Raday, O.

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Raineri, F.

Raj, R.

Regreny, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Roelkens, G.

Rojo-Romeo, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Sagnes, I.

Sanjoh, H.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Sato, T.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Seassal, C.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Shibata, Y.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Shimizu, H.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Shinoda, K.

Shinojima, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Shinya, A.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Sugawara, T.

Suzuki, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Tadokoro, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Takagi, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Takaki, K.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Takeda, K.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref] [PubMed]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

Tanabe, K.

Taniyama, H.

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Tsuji, S.

Tsukiji, N.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Viktorovitch, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Yamada, K.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Yamamoto, Y.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[Crossref]

Yamanaka, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Yoshida, J.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

Zhao, X.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Appl. Phys. Lett. (1)

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. Di Liang, D. Chapman, Y. Li, D. Oakley, T. Napoleone, P. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys., A Mater. Sci. Process. 103, 213–218 (2011).

Electron. Lett. (1)

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37(12), 764–766 (2001).
[Crossref]

IEEE Commun. Mag. (1)

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for “Green” optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1614–1620 (2011).
[Crossref]

S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 4900311 (2013).
[Crossref]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (2)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Opt. Express (4)

Photon. J. (1)

W. Hofmann, P. Moser, and D. Bimberg, “Energy-efficient VCSELs for interconnects,” Photon. J. 4(2), 652–656 (2012).
[Crossref]

Proc. IEEE (1)

D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Other (7)

International Technology Roadmap for Semiconductors, http://www.itrs.net/

Y. A. Vlsaov, “Silicon photonics for next generation computing systems,” in Proceedings of European Conference on Optical Communications, paper SC2, 2008.
[Crossref]

A. Benner, “Optical interconnect opportunities in supercomputers and high end computing,” in Optical Fiber Communication Conference (OFC), 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper OTu2B.
[Crossref]

Ministry of Internal Affairs and Communications, Japan, http://www.soumu.go.jp/

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, T. Fujii, E. Kuramochi, and M. Notomi, “High-responsivity 1.7-μm-long InGaAs photodetectors based on photonic crystal with ultrasmall buried heterostructure,” in Conference on Lasers and Electro Optics (CLEO), 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper STh4I.3.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Integrated On-Chip Optical Links Using Photonic-Crystal Lasers and Photodetectors with Current Blocking Trenches,” in Optical Fiber Communication Conference (OFC), 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OM2J.5.
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, M. Notomi, and S. Matsuo, “5.5-fJ/bit direct modulation of lambda-scale embedded active region photonic-crystal lasers,” in Proceedings of Optical Interconnects Conference, (IEEE, 2013) pp. 104 – 105.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Integration schemes of LEAP lasers and connecting waveguides: vertical coupling. The LEAP laser emits light in the direction normal to the wafer, which can be coupled by a grating coupler, and converted to the lateral direction. Part of LEAP laser in the schematic is hidden to show the layer stack of the LEAP laser and the grating coupler.
Fig. 2
Fig. 2 Process for fabricating LEAP lasers on Si. (a) An InGaAs etchstop layer and an InGaAsP MQW are grown on an InP substrate. (b) Etching and regrowth form a wavelength-scale BH, followed by the ion implantation of Si and diffusion of Zn to form lateral p-i-n junctions. (c) Deposition of 2-μm-thick SiO2 followed by CMP. (d) The processed InP wafer is bonded on a bulk Si substrate using oxygen-plasma assisted bonding. (e) The InP substrate and InGaAs etchstop are removed, and PhC holes are dry etched. (f) Finally metals are deposited and the SiO2 layer is partially etched with a wet etching solution.
Fig. 3
Fig. 3 Cross sectional transmission electron microscopy (TEM) image of the bonded wafers. The InP substrate had already been removed in these images. (a) Large area view, and (b) magnified view at the bonding interface.
Fig. 4
Fig. 4 (a) Schematic and (b) scanning electron microscopic view of fabricated on-Si LEAP lasers. The active region is as small as 2.87 × 0.3 × 0.15 μm3. Current blocking trenches were used with a trench width of 200 nm. A 2-μm-thick SiO2 layer was used as the bonding interface as well as the sacrificial layer to form the air-bridge structure.
Fig. 5
Fig. 5 (a) Light output and applied voltage versus injected current (L-I-V). A threshold current of 31 μA was obtained. (b) Lasing spectrum of the LEAP laser at an injected current of 100 μA. The lasing wavelength was 1501 nm.
Fig. 6
Fig. 6 (a) Superimposed spectra of the LEAP lasers. The injected current was varied from 20 to 100 μA. (b) Peak wavelength and 3-dB bandwidth versus injected current. The bandwidth was measured with an optical spectrum analyzer at a resolution of 0.02 nm.

Metrics