Abstract

Abstract: We propose a novel snapshot phase shift fringe projection three-dimensional (3D) surface measurement method using polarization-coded light illumination and polarization camera. The light from the light source is split into two beams, one is left circularly polarized and the other is right circularly polarized, to illuminate the object simultaneously. A four-channel division of focal plane (DoFP) polarization camera is employed to capture the light reflected from the object surface. Four images with a phase shift of π/2 are extracted from the snapshot image and then analyzed to reconstruct a 3D object surface. The proposed method is the first snapshot phase shift fringe projection approach for 3D surface imaging. It is insensitive to motion and has the potential for ultrafast 3D surface imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D phase-shifting fringe projection system on the basis of a tailored free-form mirror

Susanne Zwick, Stefan Heist, Ralf Steinkopf, Sandra Huber, Sylvio Krause, Christian Bräuer-Burchardt, Peter Kühmstedt, and Gunther Notni
Appl. Opt. 52(14) 3134-3146 (2013)

Single-shot 3D shape measurement of discontinuous objects based on a coaxial fringe projection system

Zhangying Wang, Zonghua Zhang, Nan Gao, Yanjun Xiao, Feng Gao, and Xiangqian Jiang
Appl. Opt. 58(5) A169-A178 (2019)

Telecentric 3D profilometry based on phase-shifting fringe projection

Dong Li, Chunyang Liu, and Jindong Tian
Opt. Express 22(26) 31826-31835 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
    [Crossref]
  2. X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
    [Crossref]
  3. J. Geng, “Rainbow three‐dimensional camera: new concept of high‐speed three‐dimensional vision systems,” Opt. Eng. 35(2), 376–383 (1996).
    [Crossref]
  4. P. S. Huang, C. Zhang, and F. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
    [Crossref]
  5. S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
    [Crossref]
  6. S. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48(5), 561–569 (2010).
    [Crossref]
  7. B. Li, Y. Wang, J. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).
    [Crossref]
  8. S. Heist, M. Sieler, A. Breitbarth, P. Kühmstedt, and G. Notni, “High-speed 3D shape measurement using array projection,” Proc. SPIE 8788, 878815 (2013).
    [Crossref]
  9. M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection,” Opt. Lett. 36(16), 3097–3099 (2011).
    [Crossref] [PubMed]
  10. M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50(10), 100503 (2011).
    [Crossref]
  11. M. Schaffer, M. Große, B. Harendt, and R. Kowarschik, “Coherent two-beam interference fringe projection for highspeed three-dimensional shape measurements,” Appl. Opt. 52(11), 2306–2311 (2013).
    [Crossref] [PubMed]
  12. B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22(8), 10064–10071 (2014).
    [Crossref] [PubMed]
  13. B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express 17(11), 9112–9125 (2009).
    [Crossref] [PubMed]

2014 (2)

B. Li, Y. Wang, J. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).
[Crossref]

B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22(8), 10064–10071 (2014).
[Crossref] [PubMed]

2013 (2)

M. Schaffer, M. Große, B. Harendt, and R. Kowarschik, “Coherent two-beam interference fringe projection for highspeed three-dimensional shape measurements,” Appl. Opt. 52(11), 2306–2311 (2013).
[Crossref] [PubMed]

S. Heist, M. Sieler, A. Breitbarth, P. Kühmstedt, and G. Notni, “High-speed 3D shape measurement using array projection,” Proc. SPIE 8788, 878815 (2013).
[Crossref]

2011 (3)

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection,” Opt. Lett. 36(16), 3097–3099 (2011).
[Crossref] [PubMed]

M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50(10), 100503 (2011).
[Crossref]

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

2010 (2)

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

S. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48(5), 561–569 (2010).
[Crossref]

2009 (1)

2003 (1)

P. S. Huang, C. Zhang, and F. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
[Crossref]

2001 (1)

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

1996 (1)

J. Geng, “Rainbow three‐dimensional camera: new concept of high‐speed three‐dimensional vision systems,” Opt. Eng. 35(2), 376–383 (1996).
[Crossref]

Breitbarth, A.

S. Heist, M. Sieler, A. Breitbarth, P. Kühmstedt, and G. Notni, “High-speed 3D shape measurement using array projection,” Proc. SPIE 8788, 878815 (2013).
[Crossref]

Chen, W.

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

Chen, Z.

Chiang, F.

P. S. Huang, C. Zhang, and F. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
[Crossref]

Dai, J.

B. Li, Y. Wang, J. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).
[Crossref]

Geng, J.

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

J. Geng, “Rainbow three‐dimensional camera: new concept of high‐speed three‐dimensional vision systems,” Opt. Eng. 35(2), 376–383 (1996).
[Crossref]

Große, M.

Grosse, M.

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection,” Opt. Lett. 36(16), 3097–3099 (2011).
[Crossref] [PubMed]

M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50(10), 100503 (2011).
[Crossref]

Harendt, B.

Heist, S.

S. Heist, M. Sieler, A. Breitbarth, P. Kühmstedt, and G. Notni, “High-speed 3D shape measurement using array projection,” Proc. SPIE 8788, 878815 (2013).
[Crossref]

Huang, P. S.

P. S. Huang, C. Zhang, and F. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
[Crossref]

Kowarschik, R.

Kühmstedt, P.

S. Heist, M. Sieler, A. Breitbarth, P. Kühmstedt, and G. Notni, “High-speed 3D shape measurement using array projection,” Proc. SPIE 8788, 878815 (2013).
[Crossref]

LaCasse, C. F.

Lei, S.

S. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48(5), 561–569 (2010).
[Crossref]

Li, B.

B. Li, Y. Wang, J. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).
[Crossref]

Liang, R.

Lohry, W.

B. Li, Y. Wang, J. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).
[Crossref]

Notni, G.

S. Heist, M. Sieler, A. Breitbarth, P. Kühmstedt, and G. Notni, “High-speed 3D shape measurement using array projection,” Proc. SPIE 8788, 878815 (2013).
[Crossref]

Ratliff, B. M.

Rodriguez, J. J.

Salahieh, B.

Schaffer, M.

Sieler, M.

S. Heist, M. Sieler, A. Breitbarth, P. Kühmstedt, and G. Notni, “High-speed 3D shape measurement using array projection,” Proc. SPIE 8788, 878815 (2013).
[Crossref]

Su, X.

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

Tyo, J. S.

Wang, Y.

B. Li, Y. Wang, J. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).
[Crossref]

Zhang, C.

P. S. Huang, C. Zhang, and F. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
[Crossref]

Zhang, S.

B. Li, Y. Wang, J. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).
[Crossref]

S. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48(5), 561–569 (2010).
[Crossref]

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

Adv. Opt. Photonics (1)

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Appl. Opt. (1)

Opt. Eng. (3)

M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50(10), 100503 (2011).
[Crossref]

J. Geng, “Rainbow three‐dimensional camera: new concept of high‐speed three‐dimensional vision systems,” Opt. Eng. 35(2), 376–383 (1996).
[Crossref]

P. S. Huang, C. Zhang, and F. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42(1), 163–168 (2003).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (4)

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

S. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48(5), 561–569 (2010).
[Crossref]

B. Li, Y. Wang, J. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).
[Crossref]

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

S. Heist, M. Sieler, A. Breitbarth, P. Kühmstedt, and G. Notni, “High-speed 3D shape measurement using array projection,” Proc. SPIE 8788, 878815 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup. PBS1 and PBS2 - first and second polarization beam splitters, LP1 and LP2 - first and second linear polarizers.
Fig. 2
Fig. 2 Experiment results when the polarization camera without an imaging lens is placed at the focal plane of the microscope objective. (a) Raw image, (b) P0 image, (c) P45 image with phase shift of π/2, (d) P90 image with phase shift of π, (e) P135 image with phase shift of 3π/2, (f) intensity distribution in false color, and (g) line profile of the four phase shift images.
Fig. 3
Fig. 3 3D surface measurement of a machined aluminum part. (a) - (d) phase shifted images, (e) image of the aluminum part, and (f) mesh rendering of 3D surface shape. The unit of x, y axis is pixel and the unit of z axis is 1.
Fig. 4
Fig. 4 Simulation results of wavelength mismatch and orientation error. (a) Line profile of the four phase shifted images with wavelength mismatch. (b) Combination of the four images in (a). (c) Line profile of the four phase shifted images with wavelength mismatch and orientation error. (d) Combination of the four images in (c).
Fig. 5
Fig. 5 IFOV error before and after interpolation. (a) RMSE of intensity with and without interpolation method. (b) Combination of four phase shifted images without interpolation. (c) Combination of the four phase shifted images with “spline” interpolation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E in =[ E x E y ]=[ cosα e iδ sina ],
QWLR[ π 2 , 45 ]= 1 2 [ 1 i i 1 ].
E= 1 2 [ cosαi e iδ sinα icosα+ e iδ sinα ].
I= 1 2 [1+sin(2α)sin(δ+2β)].
E H =10[ 1 0 ], E V =6[ 0 1 ].
E RC =10[ 0.7290i 0.6846 ], E LC =6[ 0.6846 0.7290i ],
E H =10[ 0.996 0.094 ], E V =6[ 0.125 0.992 ].

Metrics