Abstract

A fan-in/out polymer optical waveguide with 25-μm cores and 40-μm interchannel pitch is fabricated for a multimode multicore fiber using a microdispenser. We design a fan-in/out structure to which the Mosquito method is applicable since the Mosquito method is capable of drawing a circular graded-index core three-dimensionally. Then, we experimentally fabricate a 10-cm long fan-in/out polymer waveguide with seven cores, which is expected to connect a multicore fiber and a fiber ribbon. A minimum insertion loss of 5.26 dB at 850-nm wavelength for a 10-cm long fan-in/out waveguide is experimentally observed. Causes of variation in the insertion loss and interchannel pitch are discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method

Ryota Kinoshita, Daisuke Suganuma, and Takaaki Ishigure
Opt. Express 22(7) 8426-8437 (2014)

Core position alignment in polymer optical waveguides fabricated using the Mosquito method

Kumi Date, Koji Fukagata, and Takaaki Ishigure
Opt. Express 26(12) 15632-15641 (2018)

Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm

Kazuki Yasuhara, Feng Yu, and Takaaki Ishigure
Opt. Express 25(8) 8524-8533 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, “The fiber fuse--from a curious effect to a critical issue: A 25th year retrospective,” Opt. Express 21(5), 6422–6441 (2013).
    [Crossref] [PubMed]
  2. M. Nakazawa, “Extremely advanced transmission with 3M technologies (multi-level modulation, multi-core & multi-mode),” in Optical Fiber Communication Conference, 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper OTu1D. 1.
    [Crossref]
  3. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
    [Crossref] [PubMed]
  4. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
    [Crossref]
  5. W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
    [Crossref]
  6. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
    [Crossref] [PubMed]
  7. T. Watanabe, M. Hikita, and Y. Kokubun, “Laminated polymer waveguide fan-out device for uncoupled multi-core fibers,” Opt. Express 20(24), 26317–26325 (2012).
    [Crossref] [PubMed]
  8. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
    [Crossref] [PubMed]
  9. K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
    [Crossref]
  10. B. G. Lee, D. M. Kuchta, F. E. Doany, C. L. Schow, C. Baks, R. John, P. Pepeljugoski, T. F. Taunay, B. Zhu, M. F. Yan, G. E. Oulundsen, D. S. Vaidya, W. Luo, and N. Li, “End-to-end multicore fiber optic link operating up to 120-Gb/s,” J. Lightwave Technol. 30(6), 886–892 (2012).
  11. T. Ishigure, D. Suganuma, and K. Soma, “Three-dimensional high density channel integration of polymer optical waveguide using the Mosquito method,” in Proceedings of 64th Electron. Compon. Technol. Conf., 1042–1047 (2014).
    [Crossref]
  12. D. Suganuma and T. Ishigure, “High-density wiring of polymer optical waveguides fabricated using a microdispenser,” in Proceedings of Int. Conf. Electron. Pack., 689–693 (2014).
    [Crossref]
  13. K. Soma and T. Ishigure, “Graded-index core polymer optical waveguide circuit fabricated using a microdispenser for high-density on-board optical interconnects,” Proc. SPIE 8630, 863005 (2013).
    [Crossref]
  14. R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
    [Crossref] [PubMed]
  15. D. Suganuma and T. Ishigure, “Low-loss and low-crosstalk fan-in/out polymer optical waveguide for a multicore fiber,” Opt. Express, to be submitted.

2014 (1)

2013 (4)

K. Soma and T. Ishigure, “Graded-index core polymer optical waveguide circuit fabricated using a microdispenser for high-density on-board optical interconnects,” Proc. SPIE 8630, 863005 (2013).
[Crossref]

R. Kashyap, “The fiber fuse--from a curious effect to a critical issue: A 25th year retrospective,” Opt. Express 21(5), 6422–6441 (2013).
[Crossref] [PubMed]

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (1)

2007 (1)

Awaji, Y.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Baks, C.

Barton, J. S.

Bookey, H. T.

Campbell, S.

Chandrasekhar, S.

Dimarcello, F. V.

Doany, F. E.

Fender, A.

Fini, J. M.

Fishteyn, M.

Hikita, M.

Imamura, K.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

Inaba, H.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

Ishigure, T.

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
[Crossref] [PubMed]

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

K. Soma and T. Ishigure, “Graded-index core polymer optical waveguide circuit fabricated using a microdispenser for high-density on-board optical interconnects,” Proc. SPIE 8630, 863005 (2013).
[Crossref]

John, R.

Kanno, A.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

Kar, A. K.

Kashyap, R.

Kawanishi, T.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

Kinoshita, R.

Klaus, W.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Kobayashi, T.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Kokubun, Y.

Kuchta, D. M.

Lee, B. G.

Li, N.

Liu, X.

Luo, W.

Macpherson, W. N.

Monberg, E. M.

Mukasa, K.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

Oulundsen, G. E.

Pepeljugoski, P.

Psaila, N. D.

Puttnam, B. J.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Reid, D. T.

Sakaguchi, J.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Schow, C. L.

Soma, K.

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

K. Soma and T. Ishigure, “Graded-index core polymer optical waveguide circuit fabricated using a microdispenser for high-density on-board optical interconnects,” Proc. SPIE 8630, 863005 (2013).
[Crossref]

Suganuma, D.

Sugizaki, R.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

Taunay, T. F.

Thomson, R. R.

Vaidya, D. S.

Wada, N.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Watanabe, M.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Watanabe, T.

Yan, M. F.

Zhu, B.

IEEE J. Sel. Top. Quantum Electron. (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Lighw. Technol. (1)

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lighw. Technol. 31(4), 554–562 (2013).
[Crossref]

Opt. Express (6)

Proc. SPIE (1)

K. Soma and T. Ishigure, “Graded-index core polymer optical waveguide circuit fabricated using a microdispenser for high-density on-board optical interconnects,” Proc. SPIE 8630, 863005 (2013).
[Crossref]

Other (4)

D. Suganuma and T. Ishigure, “Low-loss and low-crosstalk fan-in/out polymer optical waveguide for a multicore fiber,” Opt. Express, to be submitted.

T. Ishigure, D. Suganuma, and K. Soma, “Three-dimensional high density channel integration of polymer optical waveguide using the Mosquito method,” in Proceedings of 64th Electron. Compon. Technol. Conf., 1042–1047 (2014).
[Crossref]

D. Suganuma and T. Ishigure, “High-density wiring of polymer optical waveguides fabricated using a microdispenser,” in Proceedings of Int. Conf. Electron. Pack., 689–693 (2014).
[Crossref]

M. Nakazawa, “Extremely advanced transmission with 3M technologies (multi-level modulation, multi-core & multi-mode),” in Optical Fiber Communication Conference, 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper OTu1D. 1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 The Mosquito method.
Fig. 2
Fig. 2 Cross-sections: (a) multimode multicore fiber © [2012] IEEE. Reprinted, with permission, from [10], (b) fan-in/out polymer waveguide designed to connect with (a), and (c) 15° tilted structure of (b)
Fig. 3
Fig. 3 Cross-section of a fabricated waveguide with 25-μm core diameter and 40-μm interchannel pitch.
Fig. 4
Fig. 4 Fan-in/out waveguide design.
Fig. 5
Fig. 5 Cross-sections of designed 3-core fan-in/out waveguide.
Fig. 6
Fig. 6 Cross-sections of a fabricated 3-core fan-in/out waveguide.
Fig. 7
Fig. 7 Waveguide design with vertically bent structure.
Fig. 8
Fig. 8 Cross-sections of a fabricated vertical bending waveguide.
Fig. 9
Fig. 9 Cross-section of a 3-core fan-in/out waveguide fabricated after needle-scan program correction.
Fig. 10
Fig. 10 Cross-section of a 5-core fan-in/out waveguide fabricated before needle-scan program correction.
Fig. 11
Fig. 11 Cross-section of a 5-core fan-in/out waveguide fabricated after needle-scan program correction.
Fig. 12
Fig. 12 Cross-section of a 7-core fan-in/out waveguide fabricated before needle-scan program correction.
Fig. 13
Fig. 13 Cross-section of a 7-core fan-in/out waveguide fabricated after needle-scan program correction.
Fig. 14
Fig. 14 Over-view of a fabricated 7-core fan-in/out waveguide.
Fig. 15
Fig. 15 Output power profile at one-dimensionally aligned core end of (a) 3-core fan-in/out waveguide, (b) 5-core waveguide, and (c) 7-core waveguide
Fig. 16
Fig. 16 Insertion loss of the fabricated 3-core, 5-core, and 7- core fan-in/out waveguides at 850-nm wavelength (10-cm long). Red broken line: Averaged insertion loss of 10-cm long straight waveguide

Tables (3)

Tables Icon

Table 1 Bending radius and bending angle in the designed fan-in/out polymer waveguide shown in Fig. 4

Tables Icon

Table 2 Pitch from core 4 at the hexagonal stacked core end

Tables Icon

Table 3 Measured pitch from core 4 at the one-dimensional aligned core end

Metrics