Abstract

Focal point shift in a solid immersion mirror of a high numerical-aperture is experimentally demonstrated with a scanning near-field optical microscope. The solid immersion mirror focuses light by a two-dimensional parabolic reflective surface integrated in a planar waveguide. The focal point shifts inward along the optical axis for metallized surface. The amount of shift from its geometrical node depends on the wavelength of the incident light and is determined to be roughly one-fifth of the wavelength.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Focusing characteristics of a planar solid-immersion mirror

Chubing Peng, Christophe Mihalcea, Kalman Pelhos, and William A. Challener
Appl. Opt. 45(8) 1785-1793 (2006)

Miniature planar solid immersion mirror with focused spot less than a quarter wavelength

William A. Challener, Christophe Mihalcea, Chubing Peng, and Kalman Pelhos
Opt. Express 13(18) 7189-7197 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
    [Crossref] [PubMed]
  2. M. Corrral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85(19), 4319–4321 (2004).
  3. J. W. M. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
    [Crossref]
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  5. S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
    [Crossref]
  6. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
    [Crossref] [PubMed]
  7. K. Şendur, C. Peng, and W. A. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
    [Crossref] [PubMed]
  8. A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, M. Brun, and S. Olivier, “Application of micro solid immersion lens as probe for near-field scanning microscopy,” Appl. Phys. Lett. 104(10), 101101 (2014).
    [Crossref]
  9. K. Ueyanagi and T. Tomono, “Proposal of a near-field optical head using a new solid immersion mirror,” Jpn. J. Appl. Phys. 39(2), 888–891 (2000).
    [Crossref]
  10. K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
    [Crossref]
  11. Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, “Design of a super-paraboloidal solid immersion mirror for near-field recording,” Jpn. J. Appl. Phys. 43(8B), 5756–5760 (2004).
    [Crossref]
  12. A. Drechsler, M. A. Lieb, C. Debus, A. J. Meixner, and G. Tarrach, “Confocal microscopy with a high numerical aperture parabolic mirror,” Opt. Express 9(12), 637–644 (2001).
    [Crossref] [PubMed]
  13. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13(18), 7189–7197 (2005).
    [Crossref] [PubMed]
  14. C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, “Near-field optical recording using a planar solid immersion mirror,” Appl. Phys. Lett. 87(15), 151105 (2005).
  15. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [Crossref]
  16. E. Wolf, “Electromagnetic diffraction in optical system I: an integral representation of the image field,” Proc. Roy. Soc. Ser. A 253(1274), 349–357 (1959).
    [Crossref]
  17. B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system,” Proc. Roy. Soc. Ser. A 253(1274), 358–379 (1959).
    [Crossref]
  18. R. Ulrich and R. J. Martin, “Geometrical optics in thin film light guides,” Appl. Opt. 10(9), 2077–2085 (1971).
    [Crossref] [PubMed]
  19. M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
    [Crossref]
  20. C. Peng and W. A. Challener, “Input-grating couplers for narrow Gaussian beam: influence of groove depth,” Opt. Express 12(26), 6481–6490 (2004).
    [Crossref] [PubMed]

2014 (1)

A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, M. Brun, and S. Olivier, “Application of micro solid immersion lens as probe for near-field scanning microscopy,” Appl. Phys. Lett. 104(10), 101101 (2014).
[Crossref]

2009 (1)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

2005 (4)

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13(18), 7189–7197 (2005).
[Crossref] [PubMed]

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, “Near-field optical recording using a planar solid immersion mirror,” Appl. Phys. Lett. 87(15), 151105 (2005).

K. Şendur, C. Peng, and W. A. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[Crossref] [PubMed]

2004 (3)

M. Corrral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85(19), 4319–4321 (2004).

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, “Design of a super-paraboloidal solid immersion mirror for near-field recording,” Jpn. J. Appl. Phys. 43(8B), 5756–5760 (2004).
[Crossref]

C. Peng and W. A. Challener, “Input-grating couplers for narrow Gaussian beam: influence of groove depth,” Opt. Express 12(26), 6481–6490 (2004).
[Crossref] [PubMed]

2003 (2)

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2002 (1)

J. W. M. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[Crossref]

2001 (1)

2000 (1)

K. Ueyanagi and T. Tomono, “Proposal of a near-field optical head using a new solid immersion mirror,” Jpn. J. Appl. Phys. 39(2), 888–891 (2000).
[Crossref]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

1971 (1)

1970 (1)

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical system I: an integral representation of the image field,” Proc. Roy. Soc. Ser. A 253(1274), 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system,” Proc. Roy. Soc. Ser. A 253(1274), 358–379 (1959).
[Crossref]

Adachi, Y.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

Assafrao, A. C.

A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, M. Brun, and S. Olivier, “Application of micro solid immersion lens as probe for near-field scanning microscopy,” Appl. Phys. Lett. 104(10), 101101 (2014).
[Crossref]

Bernet, S.

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Brun, M.

A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, M. Brun, and S. Olivier, “Application of micro solid immersion lens as probe for near-field scanning microscopy,” Appl. Phys. Lett. 104(10), 101101 (2014).
[Crossref]

Büchel, D.

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, “Near-field optical recording using a planar solid immersion mirror,” Appl. Phys. Lett. 87(15), 151105 (2005).

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, “Near-field optical recording using a planar solid immersion mirror,” Appl. Phys. Lett. 87(15), 151105 (2005).

K. Şendur, C. Peng, and W. A. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13(18), 7189–7197 (2005).
[Crossref] [PubMed]

C. Peng and W. A. Challener, “Input-grating couplers for narrow Gaussian beam: influence of groove depth,” Opt. Express 12(26), 6481–6490 (2004).
[Crossref] [PubMed]

Chon, J. W. M.

J. W. M. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[Crossref]

Corrral, M.

M. Corrral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85(19), 4319–4321 (2004).

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Debus, C.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Drechsler, A.

Escobar, I.

M. Corrral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85(19), 4319–4321 (2004).

Fürhapter, S.

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[Crossref] [PubMed]

Gage, E. C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, “Near-field optical recording using a planar solid immersion mirror,” Appl. Phys. Lett. 87(15), 151105 (2005).

Gan, X.

J. W. M. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[Crossref]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Gu, M.

J. W. M. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[Crossref]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Jesacher, A.

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[Crossref] [PubMed]

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Kim, Y. J.

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, “Design of a super-paraboloidal solid immersion mirror for near-field recording,” Jpn. J. Appl. Phys. 43(8B), 5756–5760 (2004).
[Crossref]

Kim, Y. S.

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, “Design of a super-paraboloidal solid immersion mirror for near-field recording,” Jpn. J. Appl. Phys. 43(8B), 5756–5760 (2004).
[Crossref]

Kino, G. S.

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Kumar, N.

A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, M. Brun, and S. Olivier, “Application of micro solid immersion lens as probe for near-field scanning microscopy,” Appl. Phys. Lett. 104(10), 101101 (2014).
[Crossref]

Lee, S. J.

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, “Design of a super-paraboloidal solid immersion mirror for near-field recording,” Jpn. J. Appl. Phys. 43(8B), 5756–5760 (2004).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Lieb, M. A.

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Martin, R. J.

Martinez-Cuenca, R.

M. Corrral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85(19), 4319–4321 (2004).

Meixner, A. J.

Mihalcea, C.

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13(18), 7189–7197 (2005).
[Crossref] [PubMed]

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, “Near-field optical recording using a planar solid immersion mirror,” Appl. Phys. Lett. 87(15), 151105 (2005).

Moriyasu, S.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

Ohmori, H.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

Olivier, S.

A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, M. Brun, and S. Olivier, “Application of micro solid immersion lens as probe for near-field scanning microscopy,” Appl. Phys. Lett. 104(10), 101101 (2014).
[Crossref]

Park, N. C.

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, “Design of a super-paraboloidal solid immersion mirror for near-field recording,” Jpn. J. Appl. Phys. 43(8B), 5756–5760 (2004).
[Crossref]

Park, Y. P.

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, “Design of a super-paraboloidal solid immersion mirror for near-field recording,” Jpn. J. Appl. Phys. 43(8B), 5756–5760 (2004).
[Crossref]

Pelhos, K.

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, “Near-field optical recording using a planar solid immersion mirror,” Appl. Phys. Lett. 87(15), 151105 (2005).

K. Şendur, C. Peng, and W. A. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13(18), 7189–7197 (2005).
[Crossref] [PubMed]

C. Peng and W. A. Challener, “Input-grating couplers for narrow Gaussian beam: influence of groove depth,” Opt. Express 12(26), 6481–6490 (2004).
[Crossref] [PubMed]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Pereira, S. F.

A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, M. Brun, and S. Olivier, “Application of micro solid immersion lens as probe for near-field scanning microscopy,” Appl. Phys. Lett. 104(10), 101101 (2014).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system,” Proc. Roy. Soc. Ser. A 253(1274), 358–379 (1959).
[Crossref]

Ritsch-Marte, M.

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[Crossref] [PubMed]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Saavedra, G.

M. Corrral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85(19), 4319–4321 (2004).

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Sendur, K.

K. Şendur, C. Peng, and W. A. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

Suzuki, T.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

Tarrach, G.

Tomono, T.

K. Ueyanagi and T. Tomono, “Proposal of a near-field optical head using a new solid immersion mirror,” Jpn. J. Appl. Phys. 39(2), 888–891 (2000).
[Crossref]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Uehara, Y.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

Ueyanagi, K.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

K. Ueyanagi and T. Tomono, “Proposal of a near-field optical head using a new solid immersion mirror,” Jpn. J. Appl. Phys. 39(2), 888–891 (2000).
[Crossref]

Ulrich, R.

Urbach, H. P.

A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, M. Brun, and S. Olivier, “Application of micro solid immersion lens as probe for near-field scanning microscopy,” Appl. Phys. Lett. 104(10), 101101 (2014).
[Crossref]

Wachters, A. J. H.

A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, M. Brun, and S. Olivier, “Application of micro solid immersion lens as probe for near-field scanning microscopy,” Appl. Phys. Lett. 104(10), 101101 (2014).
[Crossref]

Wakabayashi, K.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system,” Proc. Roy. Soc. Ser. A 253(1274), 358–379 (1959).
[Crossref]

E. Wolf, “Electromagnetic diffraction in optical system I: an integral representation of the image field,” Proc. Roy. Soc. Ser. A 253(1274), 349–357 (1959).
[Crossref]

Yamagata, Y.

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, “Near-field optical recording using a planar solid immersion mirror,” Appl. Phys. Lett. 87(15), 151105 (2005).

M. Corrral, R. Martinez-Cuenca, I. Escobar, and G. Saavedra, “Reduction of focus size in tightly focused linearly polarized beams,” Appl. Phys. Lett. 85(19), 4319–4321 (2004).

J. W. M. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[Crossref]

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, M. Brun, and S. Olivier, “Application of micro solid immersion lens as probe for near-field scanning microscopy,” Appl. Phys. Lett. 104(10), 101101 (2014).
[Crossref]

Jpn. J. Appl. Phys. (3)

K. Ueyanagi and T. Tomono, “Proposal of a near-field optical head using a new solid immersion mirror,” Jpn. J. Appl. Phys. 39(2), 888–891 (2000).
[Crossref]

K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmori, “Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” Jpn. J. Appl. Phys. 42(2), 898–903 (2003).
[Crossref]

Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, “Design of a super-paraboloidal solid immersion mirror for near-field recording,” Jpn. J. Appl. Phys. 43(8B), 5756–5760 (2004).
[Crossref]

Nat. Photonics (1)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Opt. Express (3)

Phys. Rev. Lett. (3)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[Crossref] [PubMed]

K. Şendur, C. Peng, and W. A. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

Proc. Roy. Soc. Ser. A (2)

E. Wolf, “Electromagnetic diffraction in optical system I: an integral representation of the image field,” Proc. Roy. Soc. Ser. A 253(1274), 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system,” Proc. Roy. Soc. Ser. A 253(1274), 358–379 (1959).
[Crossref]

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Phase of a reflected plane wave from a gold film (a) and from free space (b) as a function of the angle of incidence. Calculation assumes that the medium of incidence has an index of refraction n = 1.729 and that of gold film n = 0.188 + i 5.39.
Fig. 2
Fig. 2 Focusing of a planar solid immersion mirror. A two-dimensional parabolic mirror (a) is fabricated by cutting through an optical planar waveguide (b) and metallization on the sidewall. Light, launched into the waveguide by grating coupler, propagates in the waveguide, enters into the solid immersion mirror, and is brought to focus. XYZ is a right-handed rectangular Cartesian coordinate system with the z-axis along the optical axis of the mirror. (x, z) = (0, 0) is at the geometrical focal point of the parabolic mirror.
Fig. 3
Fig. 3 Intensity distribution | E x | 2 along the optical axis z in the neighborhood of the geometrical node, z = 0, focused by a two-dimensional parabolic mirror coated with a gold film at wavelength of 830 nm.
Fig. 4
Fig. 4 Experimental setup for measuring the intensity distribution of focused beam. S-polarized beam of light is coupled into the waveguide and focused by the PSIM. The diameter of the incident beam is 50 μm, which is obtained by focusing a collimated beam of ~5 mm by a focusing lens. Scanning an aperture over the surface normal to the waveguide plane and collecting the transmitted light through the aperture, the near-field light intensity distribution is obtained.
Fig. 5
Fig. 5 Measured intensity distribution at truncation z = −70, −125, −170, and –295 nm at light wavelength λ = 830 nm. The line profiles are the middle cross along the x direction, i.e., the horizontal direction. (The vertical direction is normal to the waveguide plane.) Note that the geometrical focal plane is at z = 0. Each frame on the left is 2 μm by 2 μm.
Fig. 6
Fig. 6 PSIM focusing characteristics as a function of a. (a) Ratio of intensity at the valley, Ivalley, between either of sidelobes and the main lobe, to that of the main lobe. (b) Peak-to-peak distance between two sidelobes. (c) Full-width-at-half-maximum, FWHM, of the central lobe. (d) Comparison of intensity distribution between the theory, represented by the solid line, and the experiment, denoted by the dash lines, at truncation z = −180 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r p = tan( θ i θ t ) tan( θ i + θ t ) .
f (x,z)= β iλ θ m θ m dθ a (θ) exp[i 2π λ β(xsinθ+zcosθ)],
a (θ)= f l 0 (θ) r p (cosθ e x +sinθ e z ) csc( θ 2 ),
l 0 (θ)=exp{ [2f ctan(θ/2)/ w 0 ] 2 }.

Metrics