Abstract

The dense packing of two dimensional flakes by van der Waals forces has enabled the creation of new metamaterials with desirable optical properties. Here we assemble graphene oxide sheets into a three dimensional metamaterial using a microfluidic technique and confirm their ordering via measurements of ellipsometric parameters, polarized optical microscopy, polarized transmission spectroscopy, infrared spectroscopy and scanning electron microscopy. We show that the produced metamaterials demonstrate strong in-plane optical anisotropy (Δn≈0.3 at n≈1.5-1.8) combined with low absorption (k<0.1) and compare them with as-synthesized samples of graphene oxide paper. Our results pave the way for engineered birefringent metamaterials on the basis of two dimensional atomic crystals including graphene and its derivatives.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bulk optical metamaterials assembled by microfluidic evaporation

Alexandre Baron, Antonio Iazzolino, Kévin Ehrhardt, Jean-Baptiste Salmon, Ashod Aradian, Vasyl Kravets, Alexander N. Grigorenko, Jacques Leng, Aurélie Le Beulze, Mona Tréguer-Delapierre, Miguel A. Correa-Duarte, and Philippe Barois
Opt. Mater. Express 3(11) 1792-1797 (2013)

Optical properties of black phosphorus

Xiaomu Wang and Shoufeng Lan
Adv. Opt. Photon. 8(4) 618-655 (2016)

Light scattering through the graphene oxide liquid crystal in a micro-channel

M. Arshadi Pirlar, M. Rezaei Mirghaed, Y. Honarmand, S. M. S. Movahed, and R. Karimzadeh
Opt. Express 27(17) 23864-23874 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  2. N. Engheta and R. W. Ziolkowski, Metamaterials, physics and engineering explorations (IEEE Wiley, New York, 2006).
  3. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
    [Crossref] [PubMed]
  4. D. V. Sivukhin, Optics (Nauka, Moscow, 1985).
  5. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, Cambridge, UK, 1980).
  6. A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
    [Crossref]
  7. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  8. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
    [Crossref]
  9. G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
    [Crossref] [PubMed]
  10. E. Morales-Narváez and A. Merkoçi, “Graphene oxide as an optical biosensing platform,” Adv. Mater. 24(25), 3298–3308 (2012).
    [Crossref] [PubMed]
  11. T. F. Yeh, J. Cihlar, C. Y. Chang, C. Cheng, and H. Teng, “Roles of graphene oxide in photocatalytic water splitting,” Mater. Today 16(3), 78–84 (2013).
    [Crossref]
  12. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
    [Crossref] [PubMed]
  13. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
    [Crossref] [PubMed]
  14. T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
    [Crossref] [PubMed]
  15. P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
    [Crossref] [PubMed]
  16. A. Merlin, J.-B. Salmon, and J. Leng, “Microfluidic-assisted growth of colloidal crystals,” Soft Matter 8(13), 3526–3537 (2012).
    [Crossref]
  17. A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk metamaterials at optical frequencies assembled by microfluidic evaporation,” Opt. Mater. Express 3, 1792–1797 (2013).
    [Crossref]
  18. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
    [Crossref]
  19. R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
    [Crossref] [PubMed]
  20. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
    [Crossref] [PubMed]
  21. P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
    [Crossref] [PubMed]
  22. H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, “A low-temperature method to produce highly reduced graphene oxide,” Nat. Commun. 4, 1539–1545 (2013).
    [Crossref] [PubMed]
  23. L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett. 103(18), 186802 (2009).
    [Crossref] [PubMed]
  24. V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81(15), 155413 (2010).
    [Crossref]
  25. I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
    [Crossref]
  26. V. G. Kravets, F. Schedin, S. Taylor, D. Viita, and A. N. Grigorenko, “Plasmonic Resonances in Optomagnetic Metamaterials Based on Double Dot Arrays,” Opt. Express 18(10), 9780–9790 (2010).
    [Crossref] [PubMed]
  27. L. J. Cote, F. Kim, and J. Huang, “Langmuir-Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131(3), 1043–1049 (2009).
    [Crossref] [PubMed]
  28. J. N. Israelachvili, Intermolecular and surface forces (2nd ed.; Academic Press: San Diego, 1992, p. 450).

2014 (1)

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

2013 (7)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, “A low-temperature method to produce highly reduced graphene oxide,” Nat. Commun. 4, 1539–1545 (2013).
[Crossref] [PubMed]

P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

T. F. Yeh, J. Cihlar, C. Y. Chang, C. Cheng, and H. Teng, “Roles of graphene oxide in photocatalytic water splitting,” Mater. Today 16(3), 78–84 (2013).
[Crossref]

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk metamaterials at optical frequencies assembled by microfluidic evaporation,” Opt. Mater. Express 3, 1792–1797 (2013).
[Crossref]

2012 (5)

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

A. Merlin, J.-B. Salmon, and J. Leng, “Microfluidic-assisted growth of colloidal crystals,” Soft Matter 8(13), 3526–3537 (2012).
[Crossref]

E. Morales-Narváez and A. Merkoçi, “Graphene oxide as an optical biosensing platform,” Adv. Mater. 24(25), 3298–3308 (2012).
[Crossref] [PubMed]

2010 (3)

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81(15), 155413 (2010).
[Crossref]

V. G. Kravets, F. Schedin, S. Taylor, D. Viita, and A. N. Grigorenko, “Plasmonic Resonances in Optomagnetic Metamaterials Based on Double Dot Arrays,” Opt. Express 18(10), 9780–9790 (2010).
[Crossref] [PubMed]

2009 (4)

L. J. Cote, F. Kim, and J. Huang, “Langmuir-Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131(3), 1043–1049 (2009).
[Crossref] [PubMed]

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett. 103(18), 186802 (2009).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

2008 (1)

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

2006 (1)

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[Crossref]

1958 (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

An, J.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Anissimova, S.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81(15), 155413 (2010).
[Crossref]

Ansell, D.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Aradian, A.

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[Crossref]

Bardhan, N. M.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Barois, P.

Baron, A.

Belcher, A. M.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Belov, P. A.

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

Blake, P.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81(15), 155413 (2010).
[Crossref]

Böhmler, M.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Bonetti, A.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Britnell, L.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Carbone, P.

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

Chang, C. Y.

T. F. Yeh, J. Cihlar, C. Y. Chang, C. Cheng, and H. Teng, “Roles of graphene oxide in photocatalytic water splitting,” Mater. Today 16(3), 78–84 (2013).
[Crossref]

Cheng, C.

T. F. Yeh, J. Cihlar, C. Y. Chang, C. Cheng, and H. Teng, “Roles of graphene oxide in photocatalytic water splitting,” Mater. Today 16(3), 78–84 (2013).
[Crossref]

Cheng, R.

H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, “A low-temperature method to produce highly reduced graphene oxide,” Nat. Commun. 4, 1539–1545 (2013).
[Crossref] [PubMed]

Chhowalla, M.

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

Cihlar, J.

T. F. Yeh, J. Cihlar, C. Y. Chang, C. Cheng, and H. Teng, “Roles of graphene oxide in photocatalytic water splitting,” Mater. Today 16(3), 78–84 (2013).
[Crossref]

Cohen, M. L.

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett. 103(18), 186802 (2009).
[Crossref] [PubMed]

Correa-Duarte, M. A.

Cote, L. J.

L. J. Cote, F. Kim, and J. Huang, “Langmuir-Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131(3), 1043–1049 (2009).
[Crossref] [PubMed]

Deslippe, J.

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett. 103(18), 186802 (2009).
[Crossref] [PubMed]

Dickson, W.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[Crossref]

Dikin, D. A.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Duan, X.

H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, “A low-temperature method to produce highly reduced graphene oxide,” Nat. Commun. 4, 1539–1545 (2013).
[Crossref] [PubMed]

Duguet, E.

P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
[Crossref] [PubMed]

Eda, G.

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

Ehrhardt, K.

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[Crossref]

Feng, H.

H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, “A low-temperature method to produce highly reduced graphene oxide,” Nat. Commun. 4, 1539–1545 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Geim, A. K.

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81(15), 155413 (2010).
[Crossref]

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Ginzburg, P.

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

Gokus, T.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Gorbachev, R. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk metamaterials at optical frequencies assembled by microfluidic evaporation,” Opt. Mater. Express 3, 1792–1797 (2013).
[Crossref]

V. G. Kravets, F. Schedin, S. Taylor, D. Viita, and A. N. Grigorenko, “Plasmonic Resonances in Optomagnetic Metamaterials Based on Double Dot Arrays,” Opt. Express 18(10), 9780–9790 (2010).
[Crossref] [PubMed]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81(15), 155413 (2010).
[Crossref]

Grigorieva, I. V.

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

Grossman, J. C.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Hartschuh, A.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Hendren, W. R.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[Crossref]

Huang, J.

L. J. Cote, F. Kim, and J. Huang, “Langmuir-Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131(3), 1043–1049 (2009).
[Crossref] [PubMed]

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Iazzolino, A.

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk metamaterials at optical frequencies assembled by microfluidic evaporation,” Opt. Mater. Express 3, 1792–1797 (2013).
[Crossref]

P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
[Crossref] [PubMed]

Jalil, R.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Jayaram, P. N.

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

Joshi, R. K.

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

Jung, I.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Kabashin, A. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kim, F.

L. J. Cote, F. Kim, and J. Huang, “Langmuir-Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131(3), 1043–1049 (2009).
[Crossref] [PubMed]

Kivshar, Y. S.

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

Kravets, V.

Kravets, V. G.

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81(15), 155413 (2010).
[Crossref]

V. G. Kravets, F. Schedin, S. Taylor, D. Viita, and A. N. Grigorenko, “Plasmonic Resonances in Optomagnetic Metamaterials Based on Double Dot Arrays,” Opt. Express 18(10), 9780–9790 (2010).
[Crossref] [PubMed]

Kumar, P. V.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Le Beulze, A.

Leng, J.

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk metamaterials at optical frequencies assembled by microfluidic evaporation,” Opt. Mater. Express 3, 1792–1797 (2013).
[Crossref]

P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
[Crossref] [PubMed]

A. Merlin, J.-B. Salmon, and J. Leng, “Microfluidic-assisted growth of colloidal crystals,” Soft Matter 8(13), 3526–3537 (2012).
[Crossref]

Li, J.

H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, “A low-temperature method to produce highly reduced graphene oxide,” Nat. Commun. 4, 1539–1545 (2013).
[Crossref] [PubMed]

Lombardo, A.

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Louie, S. G.

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett. 103(18), 186802 (2009).
[Crossref] [PubMed]

Massé, P.

P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
[Crossref] [PubMed]

Merkoçi, A.

E. Morales-Narváez and A. Merkoçi, “Graphene oxide as an optical biosensing platform,” Adv. Mater. 24(25), 3298–3308 (2012).
[Crossref] [PubMed]

Merlin, A.

A. Merlin, J.-B. Salmon, and J. Leng, “Microfluidic-assisted growth of colloidal crystals,” Soft Matter 8(13), 3526–3537 (2012).
[Crossref]

Morales-Narváez, E.

E. Morales-Narváez and A. Merkoçi, “Graphene oxide as an optical biosensing platform,” Adv. Mater. 24(25), 3298–3308 (2012).
[Crossref] [PubMed]

Mornet, S.

P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
[Crossref] [PubMed]

Nair, R. R.

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81(15), 155413 (2010).
[Crossref]

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Novoselov, K. S.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81(15), 155413 (2010).
[Crossref]

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Park, C. H.

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett. 103(18), 186802 (2009).
[Crossref] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pelton, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Piner, R.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Poddubny, A. N.

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R. J.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[Crossref]

Ravaine, S.

P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
[Crossref] [PubMed]

Ruoff, R. S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Salmon, J.-B.

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk metamaterials at optical frequencies assembled by microfluidic evaporation,” Opt. Mater. Express 3, 1792–1797 (2013).
[Crossref]

P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
[Crossref] [PubMed]

A. Merlin, J.-B. Salmon, and J. Leng, “Microfluidic-assisted growth of colloidal crystals,” Soft Matter 8(13), 3526–3537 (2012).
[Crossref]

Schedin, F.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, S. Taylor, D. Viita, and A. N. Grigorenko, “Plasmonic Resonances in Optomagnetic Metamaterials Based on Double Dot Arrays,” Opt. Express 18(10), 9780–9790 (2010).
[Crossref] [PubMed]

Stankovich, S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Su, Y.

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

Taylor, S.

Teng, H.

T. F. Yeh, J. Cihlar, C. Y. Chang, C. Cheng, and H. Teng, “Roles of graphene oxide in photocatalytic water splitting,” Mater. Today 16(3), 78–84 (2013).
[Crossref]

Thackray, B.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Tongay, S.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Tréguer-Delapierre, M.

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk metamaterials at optical frequencies assembled by microfluidic evaporation,” Opt. Mater. Express 3, 1792–1797 (2013).
[Crossref]

P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
[Crossref] [PubMed]

Vaupel, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Viita, D.

Wang, F. C.

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

Wu, H. A.

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

Wu, J.

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[Crossref]

Yang, L.

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett. 103(18), 186802 (2009).
[Crossref] [PubMed]

Yeh, T. F.

T. F. Yeh, J. Cihlar, C. Y. Chang, C. Cheng, and H. Teng, “Roles of graphene oxide in photocatalytic water splitting,” Mater. Today 16(3), 78–84 (2013).
[Crossref]

Zayats, A. V.

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[Crossref]

Zhao, X.

H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, “A low-temperature method to produce highly reduced graphene oxide,” Nat. Commun. 4, 1539–1545 (2013).
[Crossref] [PubMed]

ACS Nano (1)

T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3(12), 3963–3968 (2009).
[Crossref] [PubMed]

Adv. Mater. (2)

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

E. Morales-Narváez and A. Merkoçi, “Graphene oxide as an optical biosensing platform,” Adv. Mater. 24(25), 3298–3308 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

L. J. Cote, F. Kim, and J. Huang, “Langmuir-Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc. 131(3), 1043–1049 (2009).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Langmuir (1)

P. Massé, S. Mornet, E. Duguet, M. Tréguer-Delapierre, S. Ravaine, A. Iazzolino, J.-B. Salmon, and J. Leng, “Synthesis of size-monodisperse spherical Ag@SiO2 nanoparticles and 3-D assembly assisted by microfluidics,” Langmuir 29(6), 1790–1795 (2013).
[Crossref] [PubMed]

Mater. Today (1)

T. F. Yeh, J. Cihlar, C. Y. Chang, C. Cheng, and H. Teng, “Roles of graphene oxide in photocatalytic water splitting,” Mater. Today 16(3), 78–84 (2013).
[Crossref]

Nat. Chem. (1)

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, “Scalable enhancement of graphene oxide properties by thermally driven phase transformation,” Nat. Chem. 6(2), 151–158 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, “A low-temperature method to produce highly reduced graphene oxide,” Nat. Commun. 4, 1539–1545 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nanoparticles in plasmonic metamaterials for label-free single molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Nature (1)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (3)

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[Crossref]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81(15), 155413 (2010).
[Crossref]

Phys. Rev. Lett. (1)

L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett. 103(18), 186802 (2009).
[Crossref] [PubMed]

Science (3)

R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular Sieving through graphene oxide membranes,” Science 343(6172), 752–754 (2014).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

Soft Matter (1)

A. Merlin, J.-B. Salmon, and J. Leng, “Microfluidic-assisted growth of colloidal crystals,” Soft Matter 8(13), 3526–3537 (2012).
[Crossref]

Other (5)

D. V. Sivukhin, Optics (Nauka, Moscow, 1985).

M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, Cambridge, UK, 1980).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

N. Engheta and R. W. Ziolkowski, Metamaterials, physics and engineering explorations (IEEE Wiley, New York, 2006).

J. N. Israelachvili, Intermolecular and surface forces (2nd ed.; Academic Press: San Diego, 1992, p. 450).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Droplet assembly of overlapping graphene oxide flakes. (a) SEM image of GO flakes. (b) Structural model of GO sheets indicating the presence of oxygen-containing functional COOH groups. (c) Raman spectra for dried GO solution measured for different concentrations (laser wavelength 514.5 nm). (d) FTIR spectra of overlapping GO flakes as a function of concentration. (e) Changes in optical absorption of GO due to oxidization. (f) Reconstructed optical constants of overlapping GO flakes.
Fig. 2
Fig. 2 Evolution of the optical properties of graphene oxide sheets along microfluidic channels. (a,b) Polarized transmission spectra for dense packed GO sheets in microfluidics taken from different areas of microchannel. (c) Anisotropic properties of assembled GO sheets are confirmed by FTIR spectrometry. Inset (a): Optical image of microfluidic channels. Inset (b): Schematic of the ellipsometric and polarized transmission measurements.
Fig. 3
Fig. 3 Variable angle spectroscopic ellipsometry of self assembled GO sheets in microfluidics. (a) Psi spectra of dense packed GO flakes in microfluidics for different angles of incidence. Dashed curves are fits based on Fresnel equation calculations). (b) Extracted anisotropic optical constants of assembled GO sheets in microfluidics. (c,d) Polarization-contrast optical microscopy images (reflection mode) for assembled GO sheets in microfluidics. (e,f) Examples of typical measured interferograms of assembled GO flakes in microfluidics for TM and TE light at λ = 543 nm.
Fig. 4
Fig. 4 Optical properties of dense packed GO sheets in microfluidics. (a) Comparison of Raman spectra of dense packed GO flakes in microfluidics taken from different channel sections (analogous to Fig. 1(c)). (b) FTIR spectra of assembled GO flakes in microfluidics. (c) FTIR reflection spectra differ for GO sheets in their free (black) and microfluidic assembled (red) states.
Fig. 5
Fig. 5 SEM images showing flake-by-flake assembly of GO sheets. (a) Overlapping GO sheets resulting from dried solution. (b) GO sheets assembled in microfluidics revealing aligned domains along the microchannel axis. (c) Proposed model for the organized assembly of dense packed GO in microfluidics.

Metrics